
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

1.
2.
3.
4.
5.

Dynamic Invocation and Dispatch Overview
On this page:

Use Cases for Dynamic Invocation and Dispatch
Dynamic Invocation using ice_invoke
Dynamic Dispatch using Blobject

Use Cases for Dynamic Invocation and Dispatch
Ice applications generally use the static invocation model, in which the application invokes a Slice operation by calling a member function on a
generated proxy class. In the server, the static dispatch model behaves similarly: the request is dispatched to the servant as a statically-typed call to
a member function. Underneath this statically-typed facade, the Ice run times in the client and server are exchanging sequences of bytes
representing the encoded request arguments and results. These interactions are illustrated below:

Interactions in a static invocation.

The client initiates a call to the Slice operation by calling the member function on a proxy.add add
The generated proxy class marshals the arguments into a sequence of bytes and transmits them to the server.
In the server, the generated servant class unmarshals the arguments and calls on the subclass.add
The servant marshals the results and returns them to the client.
Finally, the client's proxy unmarshals the results and returns them to the caller.

The application is blissfully unaware of this low-level machinery, and in the majority of cases that is a distinct advantage. In some situations, however,
an application can leverage this machinery to accomplish tasks that are not possible in a statically-typed environment. Ice provides the dynamic
invocation and dispatch models for these situations, allowing applications to send and receive requests as encoded sequences of bytes instead of
statically-typed arguments.

The dynamic invocation and dispatch models offer several unique advantages to Ice services that forward requests from senders to receivers, such
as and . For these services, the request arguments are an opaque byte sequence that can be forwarded without the need to Glacier2 IceStorm
unmarshal and remarshal the arguments. Not only is this significantly more efficient than a statically-typed implementation, it also allows
intermediaries such as Glacier2 and IceStorm to be ignorant of the Slice types in use by senders and receivers.

Another use case for the dynamic invocation and dispatch models is scripting language integration. The Ice extensions for Python, PHP, and Ruby
invoke Slice operations using the dynamic invocation model; the request arguments are encoded using the .streaming interfaces

It may be difficult to resist the temptation of using a feature like dynamic invocation or dispatch, but we recommend that you carefully consider the
risks and complexities of such a decision. For example, an application that uses the streaming interface to manually encode and decode request
arguments has a high risk of failure if the argument signature of an operation changes. In contrast, this risk is greatly reduced in the static invocation
and dispatch models because errors in a strongly-typed language are found early, during compilation. Therefore, we caution you against using this
capability except where its advantages significantly outweigh the risks.

Dynamic Invocation using ice_invoke

https://doc.zeroc.com/display/Ice34/Glacier2
https://doc.zeroc.com/display/Ice34/IceStorm
https://doc.zeroc.com/display/Ice34/Streaming+Interfaces

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

Dynamic invocation is performed using the proxy member function , defined in the proxy base class . If we were to define ice_invoke ObjectPrx
the function in Slice, it would look like this:

Slice

sequence<byte> ByteSeq;

bool ice_invoke(
 string operation,
 Ice::OperationMode mode,
 ByteSeq inParams,
 out ByteSeq outParams
);

The first argument is the name of the Slice operation.

The second argument is an enumerator from the Slice type ; the possible values are and . The third Ice::OperationMode Normal Idempotent
argument, , represents the encoded parameters of the operation.inParams in

A return value of indicates a successful invocation, in which case the marshaled form of the operation's results (if any) is provided in true outParams
. A return value of signals the occurrence of a user exception whose marshaled form is provided in . The caller must also be false outParams
prepared to catch local exceptions, which are thrown directly.

Note that the Ice run time currently does not support the use of collocation optimization in dynamic invocations. Attempting to call on a ice_invoke
proxy that is configured to use collocation optimization raises . See for more CollocationOptimizationException Location Transparency
information on this optimization and instructions for disabling it.

Dynamic Dispatch using Blobject
A server enables dynamic dispatch by creating a subclass of (the name is derived from , meaning a blob of bytes). The Slice Blobject blob
equivalent of is shown below:Blobject

Slice

sequence<byte> ByteSeq;

interface Blobject {
 bool ice_invoke(ByteSeq inParams, out ByteSeq outParams);
};

The argument supplies the encoded parameters. The contents of the argument depends on the outcome of the inParams in outParams
invocation: if the operation succeeded, must return and place the encoded results in ; if a user exception occurred, ice_invoke true outParams ic

 must return , in which case contains the encoded exception. The operation may also raise local exceptions such as e_invoke false outParams Op
.erationNotExistException

The language mappings add a trailing argument of type to , and this provides the implementation with the name of the Ice::Current ice_invoke
operation being dispatched.

Because derives from , an instance is a regular Ice servant just like instances of the classes generated for user-defined Slice Blobject Object
interfaces. The primary difference is that all operation invocations on a instance are dispatched through the member Blobject ice_invoke
function.

If a subclass intends to decode the parameters (and not simply forward the request to another object), then the implementation Blobject in
obviously must know the signatures of all operations it supports. How a subclass determines its type information is an implementation Blobject
detail that is beyond the scope of this manual.

Note that a servant is also useful if you want to create a message forwarding service, such as . In this case, there is no need to Blobject Glacier2
decode any parameters; instead, the implementation simply forwards each request unchanged to a new destination. You can register a Blobject
servant as a to easily achieve this.default servant

This is the Slice name of the operation, not the name as it might be mapped to any particular language. For example, the string "while"
is the name of the Slice operation , and not (C++) or (Java).while "_cpp_while" "_while"

https://doc.zeroc.com/display/Ice34/Location+Transparency
https://doc.zeroc.com/display/Ice34/The+Current+Object
https://doc.zeroc.com/display/Ice34/Glacier2
https://doc.zeroc.com/display/Ice34/Default+Servants

Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

See Also

Location Transparency
The Current Object
Default Servants
Streaming Interfaces
Glacier2
IceStorm

https://doc.zeroc.com/display/Ice34/Location+Transparency
https://doc.zeroc.com/display/Ice34/The+Current+Object
https://doc.zeroc.com/display/Ice34/Default+Servants
https://doc.zeroc.com/display/Ice34/Streaming+Interfaces
https://doc.zeroc.com/display/Ice34/Glacier2
https://doc.zeroc.com/display/Ice34/IceStorm

	Dynamic Invocation and Dispatch Overview

