
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

1.
2.

3.

1.
2.

3.

4.
5.

6.

Intercepting Object Insertion and Extraction in Java
In some situations it may be necessary to intercept the insertion and extraction of Ice objects. For example, the is implemented Ice extension for PHP
using Ice for C++ but represents Ice objects as native PHP objects. The PHP extension accomplishes this by manually encoding and decoding Ice
objects as directed by the rules. However, the extension obviously cannot pass a native PHP object to the C++ stream function data encoding write

. To bridge this gap between object systems, Ice supplies the classes and :Object ObjectReader ObjectWriter

Java

package Ice;

public abstract class ObjectReader extends ObjectImpl {
 public abstract void read(InputStream in, boolean rid);
 // ...
}

public abstract class ObjectWriter extends ObjectImpl {
 public abstract void write(OutputStream out);
 // ...
}

A foreign Ice object is inserted into a stream using the following technique:

A Java "wrapper" class is derived from . This class wraps the foreign object and implements the member function.ObjectWriter write
An instance of the wrapper class is passed to . (This is possible because derives from .) writeObject ObjectWriter Ice.Object
Eventually, the member function is invoked on the wrapper instance.write
The implementation of encodes the object's state as directed by the .write data encoding rules for classes

It is the application's responsibility to ensure that there is a one-to-one mapping between foreign Ice objects and wrapper objects. This is necessary
in order to ensure the proper encoding of object graphs.

Extracting the state of a foreign Ice object is more complicated than insertion:

A Java "wrapper" class is derived from . An instance of this class represents a foreign Ice object.ObjectReader
An is installed that returns instances of the wrapper class. Note that a single object factory can be used for all Slice types if it object factory
is registered with an empty Slice type ID.
A Java callback class implements the interface. The implementation of expects its argument to be either ReadObjectCallback invoke
null or an instance of the wrapper class as returned by the object factory.
An instance of the callback class is passed to .readObject
When the stream is ready to extract the state of an object, it invokes on the wrapper class. The implementation of decodes the read read
object's state as directed by the . The boolean argument to indicates whether the function should data encoding rules for classes read
invoke on the stream; it is possible that the type ID of the current slice has already been read, in which case this argument is readTypeId f

.alse
The callback object passed to is invoked, passing the instance of the wrapper object. All other callback objects representing readObject
the same instance in the stream (in case of object graphs) are invoked with the same wrapper object.

See Also

Client-Side Slice-to-PHP Mapping
Data Encoding
Data Encoding for Classes
Class Factories in Java

https://doc.zeroc.com/display/Ice34/Client-Side+Slice-to-PHP+Mapping
https://doc.zeroc.com/display/Ice34/Data+Encoding
https://doc.zeroc.com/display/Ice34/Data+Encoding+for+Classes
https://doc.zeroc.com/display/Ice34/Java+Mapping+for+Classes#JavaMappingforClasses-ClassFactoriesinJava
https://doc.zeroc.com/display/Ice34/Data+Encoding+for+Classes
https://doc.zeroc.com/display/Ice34/Client-Side+Slice-to-PHP+Mapping
https://doc.zeroc.com/display/Ice34/Data+Encoding
https://doc.zeroc.com/display/Ice34/Data+Encoding+for+Classes
https://doc.zeroc.com/display/Ice34/Java+Mapping+for+Classes#JavaMappingforClasses-ClassFactoriesinJava

	Intercepting Object Insertion and Extraction in Java

