
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Custom Database Migration
Custom migration is useful when your types have changed in ways that make difficult or impossible. It is also convenient to use automatic migration
custom migration when you have complex initialization requirements for new types or new data members, because custom migration enables you to
perform many of the same tasks that would otherwise require you to write a throwaway program.

Custom migration operates in conjunction with automatic migration, allowing you to inject your own transformation rules at well-defined intercept
points in the automatic migration process. These rules are called , and are written in XML.transformation descriptors

On this page:

Simple Example of Custom Migration
Overview of Transformation Descriptors
Transformation Flow of Execution
Transformation Descriptor Scopes
Guidelines for Transformation Descriptors

Simple Example of Custom Migration
We can use a simple example to demonstrate the utility of custom migration. Suppose our application uses a whose key type is Freeze map string
and whose value type is an enumeration, defined as follows:

Slice

enum BigThree { Ford, DaimlerChrysler, GeneralMotors };

We now wish to rename the enumerator , as shown in our new definition:DaimlerChrysler

Slice

enum BigThree { Ford, Daimler, GeneralMotors };

According to the , all occurrences of the enumerator would be transformed into , because rules for default transformations DaimlerChrysler Ford C
 no longer exists in the new definition and therefore the default value is used instead.hrysler Ford

To remedy this situation, we use the following transformation descriptors:

XML

<transformdb>
 <database key="string" value="::BigThree">
 <record>
 <if test="oldvalue == ::Old::DaimlerChrysler">
 <set target="newvalue" value="::New::Daimler"/>
 </if>
 </record>
 </database>
</transformdb>

When executed, these descriptors convert occurrences of in the old type system into in the transformed database's DaimlerChrysler Daimler
new type system.

Overview of Transformation Descriptors
As we saw in the previous example, FreezeScript are written in XML.transformation descriptors

A transformation descriptor file has a well-defined structure. The top-level descriptor in the file is . A descriptor must <transformdb> <database>
be present within to define the key and value types used by the database. Inside , the descriptor triggers <transformdb> <database> <record>
the transformation process.

https://doc.zeroc.com/display/Ice34/Automatic+Database+Migration
https://doc.zeroc.com/display/Ice34/Freeze+Maps
https://doc.zeroc.com/display/Ice34/Automatic+Database+Migration#AutomaticDatabaseMigration-TypeCompatibilityRulesforAutomaticMigration
https://doc.zeroc.com/display/Ice34/FreezeScript+Transformation+XML+Reference

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

1.
2.

3.
4.

During transformation, type-specific actions are supported by the and descriptors, both of which are children of <transform> <init> <transform
. One descriptor and one descriptor may be defined for each type in the new Slice definitions. Each time db> <transform> <init> transformdb

creates a new instance of a type, it executes the descriptor for that type, if one is defined. Similarly, each time transforms an <init> transformdb
instance of an old type into a new type, the descriptor for the new type is executed.<transform>

The , , , and descriptors may contain general-purpose action descriptors such as , , and <database> <record> <transform> <init> <if> <set> <
. These actions resemble statements in programming languages like C++ and Java, in that they are executed in the order of definition and echo>

their effects are cumulative. Actions can make use of the that should look familiar to C++ and Java programmers.expression language

Transformation Flow of Execution
The transformation descriptors are executed as follows:

<database> is executed first. Each child descriptor of is executed in the order of definition. If a descriptor is <database> <record>
present, database transformation occurs at that point. Any child descriptors of that follow are not executed until <database> <record>
transformation completes.
During transformation of each record, creates instances of the new key and value types, which includes the execution of the transformdb

 descriptors for those types. Next, the old key and value are transformed into the new key and value, in the following manner:<init>
Locate the descriptor for the type.<transform>
If no descriptor is found, or the descriptor exists and it does not preclude default transformation, then transform the data as in autom

.atic database migration
If the descriptor exists, execute it.<transform>
Finally, execute the child descriptors of .<record>

Transformation Descriptor Scopes
The descriptor creates a global scope, allowing child descriptors of to define symbols that are accessible in any <database> <database>
descriptor.

Furthermore, certain other descriptors create local scopes that exist only for the duration of the descriptor's execution. For example, the <transform>
descriptor creates a local scope and defines the symbols and to represent a value in its old and new forms. Child descriptors of old new <transfor

 can also define new symbols in the local scope, as long as those symbols do not clash with an existing symbol in that scope. It is legal to add a m>
new symbol with the same name as a symbol in an outer scope, but the outer symbol will not be accessible during the descriptor's execution.

The global scope is useful in many situations. For example, suppose you want to track the number of times a certain value was encountered during
transformation. This can be accomplished as shown below:

XML

<transformdb>
 <database key="string" value="::Ice::Identity">
 <define name="categoryCount" type="int" value="0"/>
 <record/>
 <echo message="categoryCount = " value="categoryCount"/>
 </database>
 <transform type="::Ice::Identity">
 <if test="new.category == 'Accounting'">
 <set target="categoryCount" value="categoryCount + 1"/>
 </if>
 </transform>
</transformdb>

In this example, the descriptor introduces the symbol into the global scope, defining it as type with an initial value <define> categoryCount int
of zero. Next, the descriptor causes transformation to proceed. Each occurrence of the type causes its <record> Ice::Identity <transform>
descriptor to be executed, which examines the member and increases if necessary. Finally, after transformation category categoryCount
completes, the descriptor displays the final value of .<echo> categoryCount

To reinforce the relationships between descriptors and scopes, consider the following diagram. Several descriptors are shown, including the symbols
they define in their local scopes. In this example, the descriptor has a dictionary target and therefore the default symbol for the element <iterate>
value, , hides the symbol of the same name in the parent descriptor's scope.value <init>

In order for a global symbol to be available to a or descriptor, the symbol must be defined before the <transform> <init> <record>
descriptor is executed.

https://doc.zeroc.com/display/Ice34/FreezeScript+Descriptor+Expression+Language
https://doc.zeroc.com/display/Ice34/Automatic+Database+Migration
https://doc.zeroc.com/display/Ice34/Automatic+Database+Migration

Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

In addition to symbols in the scope, child descriptors of can also refer to symbols from the and <iterate> <iterate> <init> <database>
scopes.

Relationship between descriptors and scopes.

Guidelines for Transformation Descriptors
There are three points at which you can intercept the transformation process: when transforming a record (), when transforming an <record>
instance of a type (), and when creating an instance of a type ().<transform> <init>

In general, is used when your modifications require access to both the key and value of the record. For example, if the database key is <record>
needed as a factor in an equation, or to identify an element in a dictionary, then is the only descriptor in which this type of modification is <record>
possible. The descriptor is also convenient to use when the number of changes to be made is small, and does not warrant the effort of <record>
writing separate or descriptors.<transform> <init>

The descriptor has a more limited scope than . It is used when changes must potentially be made to all instances of a type <transform> <record>
(regardless of the context in which that type is used) and access to the old value is necessary. The descriptor does not have access <transform>
to the database key and value, therefore decisions can only be made based on the old and new instances of the type in question.

Finally, the descriptor is useful when access to the old instance is not required in order to properly initialize a type. In most cases, this activity <init>
could also be performed by a descriptor that simply ignored the old instance, so may seem redundant. However, there is one <transform> <init>
situation where is required: when it is necessary to initialize an instance of a type that is introduced by the new Slice definitions. Since there <init>
are no instances of this type in the current database, a descriptor for that type would never be executed.<transform>

See Also

This situation can be avoided by assigning a different symbol name to the element value.

Ice 3.4.2 Documentation

4 Copyright © 2017, ZeroC, Inc.

Automatic Database Migration
Freeze Maps
FreezeScript Transformation XML Reference
FreezeScript Descriptor Expression Language

https://doc.zeroc.com/display/Ice34/Automatic+Database+Migration
https://doc.zeroc.com/display/Ice34/Freeze+Maps
https://doc.zeroc.com/display/Ice34/FreezeScript+Transformation+XML+Reference
https://doc.zeroc.com/display/Ice34/FreezeScript+Descriptor+Expression+Language

	Custom Database Migration

