
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Protocol Messages
The Ice protocol uses five messages:

Request (from client to server)
Batch request (from client to server)
Reply (from server to client)
Validate connection (from server to client)
Close connection (client to server or server to client)

Of these messages, validate and close connection only apply to connection-oriented transports.

As with the , protocol messages have no alignment restrictions. Each message consists of a message header and (except for validate data encoding
and close connection) a message body that immediately follows the header.

On this page:

Message Header
Request Message Body
Batch Request Message Body
Reply Message Body
Validate Connection Message
Close Connection Message
Protocol State Machine
Disorderly Connection Closure

Message Header
Each protocol message has a 14-byte header that is encoded as if it were the following structure:

Slice

struct HeaderData {
 int magic;
 byte protocolMajor;
 byte protocolMinor;
 byte encodingMajor;
 byte encodingMinor;
 byte messageType;
 byte compressionStatus;
 int messageSize;
};

The message header members are described in the following table.

Member Description

magic A four-byte magic number consisting of the ASCII-encoded values of 'I', 'c', 'e', 'P' (0x49, 0x63, 0x65, 0x50)

protocolMajor The protocol major version number

protocolMinor The protocol minor version number

encodingMajor The encoding major version number

encodingMinor The encoding minor version number

messageType The message type

compressionStatus The status of the messagecompression

messageSize The size of the message in bytes, including the header

Currently, both the protocol and the encoding are at version 1.0. The valid message types are shown in the following table.

https://doc.zeroc.com/display/Ice34/Data+Encoding
https://doc.zeroc.com/display/Ice34/Protocol+Compression

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

Message Type Encoding

Request 0

Batch request 1

Reply 2

Validate connection 3

Close connection 4

The encoding for the message bodies of each of these message types is described in the sections that follow.

Request Message Body
A request message contains the data necessary to perform an invocation on an object, including the identity of the object, the operation name, and
input parameters. A request message is encoded as if it were the following structure:

Slice

struct RequestData {
 int requestId;
 Ice::Identity id;
 Ice::StringSeq facet;
 string operation;
 byte mode;
 Ice::Context context;
 Encapsulation params;
};

The request members are described in the following table.

Member Description

requestId The request identifier

id The object identity

facet The name (zero- or one-element sequence)facet

operation The operation name

mode A byte representation of (=normal, =idempotent)Ice::OperationMode 0 2

context The invocation context

params The input parameters, in order of declarationencapsulated

The request identifier zero () is reserved for use in requests and indicates that the server must not send a reply to the client. A non-zero 0 oneway
request identifier must uniquely identify the request on a connection, and must not be reused while a reply for the identifier is outstanding.

The field has either zero elements or one element. An empty sequence denotes the default facet, and a one-element sequence provides the facet
facet name in its first member. If a receiver receives a request with a field with more than one element, it must throw a .facet MarshalException

Batch Request Message Body
A request message contains one or more oneway requests, bundled together for the sake of efficiency. A batch request message is encoded batch
as integer (not a size) that specifies the number of requests in the batch, followed by the corresponding number of requests, encoded as if each
request were the following structure:

https://doc.zeroc.com/display/Ice34/Object+Identity
https://doc.zeroc.com/display/Ice34/Facets+and+Versioning
https://doc.zeroc.com/display/Ice34/Request+Contexts
https://doc.zeroc.com/display/Ice34/Basic+Data+Encoding#BasicDataEncoding-encapsulation
https://doc.zeroc.com/display/Ice34/Oneway+Invocations
https://doc.zeroc.com/display/Ice34/Batched+Invocations

Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

Slice

struct BatchRequestData {
 Ice::Identity id;
 Ice::StringSeq facet;
 string operation;
 byte mode;
 Ice::Context context;
 Encapsulation params;
};

The batch request members are described in the following table.

Member Description

id The object identity

facet The name (zero- or one-element sequence)facet

operation The operation name

mode A byte representation of Ice::OperationMode

context The invocation context

params The encapsulated input parameters, in order of declaration

Note that no request ID is necessary for batch requests because only oneway invocations can be batched.

The field has either zero elements or one element. An empty sequence denotes the default facet, and a one-element sequence provides the facet
facet name in its first member. If a receiver receives a batch request with a field with more than one element, it must throw a facet MarshalExcept

.ion

Reply Message Body
A reply message body contains the results of a twoway invocation, including any return value, out-parameters, or exception. A reply message body is
encoded as if it were the following structure:

struct ReplyData {
 int requestId;
 byte replyStatus;
 Encapsulation body; // messageSize - 19 bytes
};

The first four bytes of a reply message body contain a request ID. The request ID matches an outgoing request and allows the requester to associate
the reply with the .original request

The byte following the request ID indicates the status of the request; the remainder of the reply message body following the status byte is an encapsul
 whose contents depend on the status value. The possible reply status values are shown in the table below (most of these values correspond to ation c

).ommon exceptions

Reply
status

Success Description

Success 0 A successful reply message is encoded as an containing out-parameters (in the order of declaration), encapsulation
followed by the return value for the invocation, encoded according to their types as specified in . If an Data Encoding
operation declares a return type and no out-parameters, an empty encapsulation is encoded.void

User
exception

1 A user exception reply message contains an containing the .encapsulation encoded user exception

https://doc.zeroc.com/display/Ice34/Object+Identity
https://doc.zeroc.com/display/Ice34/Facets+and+Versioning
https://doc.zeroc.com/display/Ice34/Request+Contexts
https://doc.zeroc.com/display/Ice34/Basic+Data+Encoding#BasicDataEncoding-encapsulation
https://doc.zeroc.com/display/Ice34/Basic+Data+Encoding#BasicDataEncoding-encapsulation
https://doc.zeroc.com/display/Ice34/Run-Time+Exceptions#RunTimeExceptions-CommonExceptions
https://doc.zeroc.com/display/Ice34/Run-Time+Exceptions#RunTimeExceptions-CommonExceptions
https://doc.zeroc.com/display/Ice34/Basic+Data+Encoding#BasicDataEncoding-encapsulation
https://doc.zeroc.com/display/Ice34/Data+Encoding
https://doc.zeroc.com/display/Ice34/Basic+Data+Encoding#BasicDataEncoding-encapsulation
https://doc.zeroc.com/display/Ice34/Data+Encoding+for+Exceptions

Ice 3.4.2 Documentation

4 Copyright © 2017, ZeroC, Inc.

Object
does not
exist

2 If the target object does not exist, the reply message is encoded as if it were the following structure inside an encapsulati
:on

Slice

struct ReplyData {
 Ice::Identity id;
 Ice::StringSeq facet;
 string operation;
};

The invalid object reply members are described below:

The field has either zero elements or one element. An empty sequence denotes the default facet, and a one-facet
element sequence provides the facet name in its first member. If a receiver receives a reply with a field with more facet
than one element, it must throw a .MarshalException

Facet
does not
exist

3 If the target object does not support the facet encoded in the request message, the reply message is encoded as for
reply status 2.

Operatio
n does
not exist

4 If the target object does not support the operation encoded in the request message, the reply message is encoded as for
reply status 2.

Unknown
Ice local
exception

5 The reply message for an unknown Ice local exception is encoded as an containing a single string that encapsulation
describes the exception.

Unknown
Ice user
exception

6 The reply message for an unknown Ice user exception is encoded as an containing a single string that encapsulation
describes the exception.

Unknown
exception

7 The reply message for an unknown exception is encoded as an containing a single string that describes encapsulation
the exception.

Validate Connection Message
A server sends a validate connection message when it receives a new connection.

The message indicates that the server is ready to receive requests; the client must not send any messages on the connection until it has received the
validate connection message from the server. No reply to the message is expected by the server.

The purpose of the validate connection message is two-fold:

It confirms to the client that the server is indeed an Ice server and not another type of server reached by accident.
It prevents the client from writing a request message to its local transport buffers until after the server has acknowledged that it can actually
process the request. This avoids a race condition caused by the server's TCP/IP stack accepting connections in its backlog while the server
is in the process of shutting down: if the client were to send a request in this situation, the request would be lost but the client could not
safely re-issue the request because that might violate at-most-once semantics. The validate connection message guarantees that a server
is not in the middle of shutting down when the server's TCP/IP stack accepts an incoming connection and so avoids the race condition.

The comprises the entire validate connection message. The status of a validate connection message is always .message header compression 0

Close Connection Message
A close connection message is sent when a peer is about to gracefully shutdown a .connection

Validate connection messages are only used for connection-oriented transports.

https://doc.zeroc.com/display/Ice34/Basic+Data+Encoding#BasicDataEncoding-encapsulation
https://doc.zeroc.com/display/Ice34/Basic+Data+Encoding#BasicDataEncoding-encapsulation
https://doc.zeroc.com/display/Ice34/Basic+Data+Encoding#BasicDataEncoding-encapsulation
https://doc.zeroc.com/display/Ice34/Basic+Data+Encoding#BasicDataEncoding-encapsulation
https://doc.zeroc.com/display/Ice34/Basic+Data+Encoding#BasicDataEncoding-encapsulation
https://doc.zeroc.com/display/Ice34/Protocol+Compression
https://doc.zeroc.com/display/Ice34/Connection+Management

Ice 3.4.2 Documentation

5 Copyright © 2017, ZeroC, Inc.

1.
2.
3.

1.
2.
3.
4.
5.
6.

The comprises the entire close connection message. The status of a close connection message is always .message header compression 0

Either client or server can initiate connection closure. On the client side, connection closure is triggered by (ACM), Active Connection Management
which automatically reclaims connections that have been idle for some time.

This means that connection closure can be initiated at will by either end of a connection; most importantly, no state is associated with a connection as
far as the object model or application semantics are concerned.

The client side can close a connection whenever no reply for a request is outstanding on the connection. The sequence of events is:

The client sends a close connection message.
The client closes the writing end of the connection.
The server responds to the client's close connection message by closing the connection.

The server side can close a connection whenever no operation invocation is in progress that was invoked via that connection. This guarantees that
the server will not violate : an operation, once invoked in a servant, is allowed to complete and its results are returned to the at-most-once semantics
client. Note that the server can close a connection even after it has received a request from the client, provided that the request has not yet been
passed to a servant. In other words, if the server decides that it wants to close a connection, the sequence of events is:

The server discards all incoming requests on the connection.
The server waits until all still executing requests have completed and their results have been returned to the client.
The server sends a close connection message to the client.
The server closes its writing end of the connection.
The client responds to the server's close connection message by closing both its reading and writing ends of the connection.
If the client has outstanding requests at the time it receives the close connection message, it re-issues these requests on a new connection.
Doing so is guaranteed not to violate at-most-once semantics because the server guarantees not to close a connection while requests are
still in progress on the server side.

Protocol State Machine
From a client's perspective, the Ice protocol behaves according to the state machine shown below:

Protocol state machine.

Close connection messages are only used for connection-oriented transports.

https://doc.zeroc.com/display/Ice34/Protocol+Compression
https://doc.zeroc.com/display/Ice34/Active+Connection+Management
https://doc.zeroc.com/display/Ice34/Automatic+Retries

Ice 3.4.2 Documentation

6 Copyright © 2017, ZeroC, Inc.

To summarize, a new connection is inactive until a message has been received by the client, at which point the active state is validate connection
entered. The connection remains in the active state until it is shut down, which can occur when there are no more proxies using the connection, or
after the connection has been idle for a while. At this point, the connection is , meaning that a message is sent, and gracefully closed close connection
the connection is closed.

Disorderly Connection Closure
Any violation of the protocol or encoding rules results in a disorderly connection closure: the side of the connection that detects a violation
unceremoniously closes it (without sending a close connection message or similar). There are many potential error conditions that can lead to
disorderly connection closure; for example, the receiver might detect that a message has a bad magic number or incompatible version, receive a
reply with an ID that does not match that of an outstanding request, receive a validate connection message when it should not, or find illegal data in a
request (such as a negative size, or a size that disagrees with the actual data that was unmarshaled).

See Also

Data Encoding
Protocol Compression
Object Identity
Facets and Versioning
Request Contexts
Oneway Invocations
Batched Invocations
Protocol and Encoding Versions
Active Connection Management
Automatic Retries
Connection Closure

https://doc.zeroc.com/display/Ice34/Connection+Closure
https://doc.zeroc.com/display/Ice34/Data+Encoding
https://doc.zeroc.com/display/Ice34/Protocol+Compression
https://doc.zeroc.com/display/Ice34/Object+Identity
https://doc.zeroc.com/display/Ice34/Facets+and+Versioning
https://doc.zeroc.com/display/Ice34/Request+Contexts
https://doc.zeroc.com/display/Ice34/Oneway+Invocations
https://doc.zeroc.com/display/Ice34/Batched+Invocations
https://doc.zeroc.com/display/Ice34/Protocol+and+Encoding+Versions
https://doc.zeroc.com/display/Ice34/Active+Connection+Management
https://doc.zeroc.com/display/Ice34/Automatic+Retries
https://doc.zeroc.com/display/Ice34/Connection+Closure

	Protocol Messages

