
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Data Encoding for Exceptions
Exceptions are marshaled as shown below:

Marshaling format for exceptions.

Every exception instance is preceded by a single byte that indicates whether the exception uses class members: the byte value is if any of the 1
exception members are classes (or if any of the exception members, recursively, contain class members) and , otherwise.0

Following the header byte, the exception is marshaled as a sequence of pairs: the first member of each pair is the for an exception slice, and type ID
the second member of the pair is a containing the marshaled members of that slice. The sequence of pairs is marshaled in derived-to-base slice
order, with the most-derived slice first, and ending with the least-derived slice. Within each slice, data members are marshaled as for : in structures
the order in which they are defined in the Slice definition.

Following the sequence of pairs, any that are used by the members of the exception are marshaled. This final part is optional: it is class instances
present only if the header byte is .1

To illustrate the marshaling, consider the following exception hierarchy:

Slice

exception Base {
 int baseInt;
 string baseString;
};

exception Derived extends Base {
 bool derivedBool;
 string derivedString;
 double derivedDouble;
};

Assume that the exception members are initialized to the values shown:

Member Type Value Marshaled Size (in bytes)

baseInt int 99 4

baseString string "Hello" 6

derivedBool bool true 1

 derivedString string "World!" 7

 derivedDouble double 3.14 8

Member values of an exception of type .Derived

From the above table, we can see that the total size of the members of is 10 bytes, and the total size of the members of is 16 bytes. Base Derived
None of the exception members are classes. An instance of this exception has the on-the-wire representation shown in the next table. (The size,
type, and byte offset of the marshaled representation is indicated for each component.)

https://doc.zeroc.com/display/Ice34/Type+IDs
https://doc.zeroc.com/display/Ice34/Basic+Data+Encoding#BasicDataEncoding-slice
https://doc.zeroc.com/display/Ice34/Basic+Data+Encoding#BasicDataEncoding-structure
https://doc.zeroc.com/display/Ice34/Data+Encoding+for+Classes

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

Marshaled Value Size in Bytes Type Byte offset

 0 (no class members) 1 bool 0

 "::Derived" (type ID) 10 string 1

 20 (byte count for slice) 4 int 11

)1 (derivedBool 1 bool 15

 "World!" (derivedString
)

7 string 16

)3.14 (derivedDouble 8 double 23

 "::Base" (type ID) 7 string 31

 14 (byte count for slice) 4 int 38

)99 (baseInt 4 int 42

)"Hello" (baseString 6 string 46

Marshaled representation of the exception

Note that the size of each string is one larger than the actual string length. This is because each string is preceded by a count of its number of bytes,
as directed by the .encoding for strings

The receiver of this sequence of values uses the header byte to decide whether it eventually must unmarshal any class instances contained in the
exception (none in this example) and then examines the first type ID (). If the receiver recognizes that type ID, it can unmarshal the ::Derived
contents of the first slice, followed by the remaining slices; otherwise, the receiver reads the byte count that follows the unknown type (20) and then
skips 20-4 bytes in the input stream, which is the start of the type ID for the second slice (). If the receiver does not recognize that type ID ::Base
either, it again reads the byte count following the type ID (14), skips 14-4 bytes, and attempts to read another type ID. (This can happen only if client
and server have been compiled with mismatched Slice definitions that disagree in the exception specification of an operation.) In this case, the
receiver will eventually encounter an unmarshaling error, which it can report with a .MarshalException

If an exception contains class members, these members are marshaled following the exception slices as described in the following section.

See Also

Type IDs
Basic Data Encoding
Data Encoding for Classes

https://doc.zeroc.com/display/Ice34/Basic+Data+Encoding#BasicDataEncoding-string
https://doc.zeroc.com/display/Ice34/Type+IDs
https://doc.zeroc.com/display/Ice34/Basic+Data+Encoding
https://doc.zeroc.com/display/Ice34/Data+Encoding+for+Classes

	Data Encoding for Exceptions

