
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Data Encoding for Class Type IDs
Unlike for exception , class type IDs are not simple strings. Instead, a class type ID is marshaled as a boolean followed by either a string or a type IDs

, to conserve bandwidth. To illustrate this, consider the following class hierarchy:size

Slice

class Base {
 // ...
};

class Derived extends Base {
 // ...
};

The type IDs for the class are and . Suppose the sender marshals three instances of as part of a single slices ::Derived ::Base ::Derived
request. (For example, two instances could be out-parameters and one instance could be the return value.)

The first instance that is sent on the wire contains the type IDs and preceding their respective slices. Because marshaling ::Derived ::Base
proceeds in derived-to-base order, the first type ID that is sent is . Every time the sender sends a type ID that it has not sent previously in ::Derived
the same request, it sends the boolean value , followed by the type ID. Internally, the sender also assigns a unique positive number to each false
type ID. These numbers start at and increment by one for each type ID that has not been marshaled previously. This means that the first type ID is 1
encoded as the boolean value , followed by , and the second type ID is encoded as the boolean value , followed by .false ::Derived false ::Base

When the sender marshals the remaining two instances, it consults a lookup table of previously-marshaled type IDs. Because both type IDs were
sent previously in the same request (or reply), the sender encodes all further occurrences of as the value followed by the number ::Derived true 1
encoded as a size, and it encodes all further occurrences of as the value followed by the number encoded as a size.::Base true 2

When the receiver reads a type ID, it first reads its boolean marker:

If the boolean is , the receiver reads a string and enters that string into a lookup table that maps integers to strings. The first new false
class type ID received in a request is numbered , the second new class type ID is numbered , and so on.1 2
If the boolean value is , the receiver reads a number encoded as a size and uses it to retrieve the corresponding class type ID from the true
lookup table.

Note that this numbering scheme is re-established for each new . (As we will see in our discussion of , parameters, encapsulation protocol messages
return values, and exceptions are always marshaled inside an enclosing encapsulation.) For subsequent or nested encapsulation, the numbering
scheme restarts, with the first new type ID being assigned the value . In other words, each encapsulation uses its own independent numbering 1
scheme for class type IDs to satisfy the constraint that encapsulations must not depend on their surrounding context.

Encoding class type IDs in this way provides significant savings in bandwidth: whenever an ID is marshaled a second and subsequent time, it is
marshaled as a two-byte value (assuming no more than 254 distinct type IDs per request) instead of as a string. Because type IDs can be long,
especially if you are using nested modules, the savings are considerable.

See Also

Type IDs
Basic Data Encoding
Protocol Messages

https://doc.zeroc.com/display/Ice34/Type+IDs
https://doc.zeroc.com/display/Ice34/Basic+Data+Encoding#BasicDataEncoding-size
https://doc.zeroc.com/display/Ice34/Basic+Data+Encoding#BasicDataEncoding-slice
https://doc.zeroc.com/display/Ice34/Basic+Data+Encoding#BasicDataEncoding-encapsulation
https://doc.zeroc.com/display/Ice34/Protocol+Messages
https://doc.zeroc.com/display/Ice34/Type+IDs
https://doc.zeroc.com/display/Ice34/Basic+Data+Encoding
https://doc.zeroc.com/display/Ice34/Protocol+Messages

	Data Encoding for Class Type IDs

