Ice 3.4.2 Documentation

Simple Example of Class Encoding

To make the preceding discussion more concrete, consider the following class definitions:

Slice

interface Sonelnterface {

void opl();
b
cl ass Base {
int baselnt;
voi d op2();

string baseString;

}s

class Derived extends Base inplenents Sonelnterface {
bool derivedBool ;
string derivedString;
voi d op3();
doubl e deri vedDoubl e;
s

Note that Base and Der i ved have operations, and that Der i ved also implements the interface Sonel nt er f ace. Because marshaling of classes is
concerned with state, not behavior, the operations op1, op2, and op3 are simply ignored during marshaling and the on-the-wire representation is as
if the classes had been defined as follows:

Slice

cl ass Base {
int baselnt;
string baseString;

3

class Derived extends Base {
bool derivedBool ;
string derivedString;
doubl e derivedDoubl e;

}

Suppose the sender marshals two instances of Der i ved (for example, as two in-parameters in the same request) with these member values:

First instance:

Member Type Value Marshaled Size (in
bytes)

basel nt int 99 4
baseString string "Hello" 6
deri vedBool bool true 1
derivedString string “Wrld!" 7
derivedDoubl e double 3.14 8

Second instance:

Member Type Value Marshaled Size (in
bytes)
basel nt int 115 4
baseString string | "Cave" 5
deri vedBool bool fal se 1

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Data+Encoding+for+Class+Type+IDs

Ice 3.4.2 Documentation

derivedString string "Canent 6
deri vedDoubl e double ' 6.32 8

The sender arbitrarily assigns a non-zero identity to each instance. Typically, the sender will simply consecutively number the instances starting at 1.
For this example, assume that the two instances have the identities 1 and 2. The marshaled representation for the two instances (assuming that they
are marshaled immediately following each other) is shown below:

Marshaled Value Sizein Type Byte
Bytes offset

1 (identity) 4 int 0

0 (marker for class type ID) 1 bool 4
"::Derived" (class type ID) 10 string 5
20 (byte count for slice) 4 int 15
1 (deri vedBool) 1 bool 19
“Worl d!" (derivedString) 7 string 20
3. 14 (deri vedDoubl e) 8 double 27
0 (marker for class type ID) 1 bool 35
"::Base" (type ID) 7 string 36
14 (byte count for slice) 4 int 43
99 (basel nt) 4 int 47
"Hel | 0" (baseString) 6 string 51
0 (marker for class type ID) 1 bool 57
"::lce:: Cbject" (class type ID) 14 string 58
5 (byte count for slice) 4 int 72
0 (number of dictionary entries) 1 si ze 76
2 (identity) 4 int 77
1 (marker for class type ID) 1 bool 81
1 (class type ID) 1 si ze 82
19 (byte count for slice) 4 int 83
0 (deri vedBool) 1 bool 87
"Canent' (derivedString) 6 string 88
6. 32 (deri vedDoubl e) 8 double 94
1 (marker for class type ID) 1 bool 102
2 (class type ID) 1 si ze 103
13 (byte count for slice) 4 int 104
115 (basel nt) 4 int 108
"Cave" (baseString) 5 string 112
1 (marker for class type ID) 1 bool 117
3 (class type ID) 1 si ze 118
5 (byte count for slice) 4 int 119
0 (number of dictionary entries) 1 si ze 123

Note that, because classes (like exceptions) are sent as a sequence of slices, the receiver of a class can slice off any derived parts of a class it does
not understand. Also note that (as shown in the above table) each class instance contains three slices. The third slice is for the type : : | ce: : Qbj ect
, which is the base type of all classes. The class type ID : : | ce: : Obj ect has the number 3 in this example because it is the third distinct type ID
that is marshaled by the sender. (See entries at byte offsets 58 and 118 in the above table.) All class instances have this final slice of type : : | ce: :
oj ect .

Marshaling a separate slice for : : | ce: : Cbj ect dates back to Ice versions 1.3 and earlier. In those versions, classes carried a facet map that was
marshaled as if it were defined as follows:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Data+Encoding+for+Classes
https://doc.zeroc.com/display/Ice34/Data+Encoding+for+Exceptions
https://doc.zeroc.com/display/Ice34/Basic+Data+Encoding#BasicDataEncoding-slice
https://doc.zeroc.com/display/Ice34/Type+IDs

Ice 3.4.2 Documentation

Slice

nmodul e Ice {
class Object;

di ctionary<string, Object> Facet Map;

class Object {
Facet Map facets; // No longer exists
b
b

As of Ice version 1.4, this facet map is always empty, that is, the count of entries for the dictionary that is marshaled in the : : | ce: : Obj ect slice is
always zero. If a receiver receives a class instance with a non-empty facet map, it must throw a Mar shal Except i on.

Note that if a class has no data members, a type ID and slice for that class is still marshaled. The byte count of the slice will be 4 in this case,
indicating that the slice contains no data.

See Also

Data Encoding for Classes
Data Encoding for Exceptions
Basic Data Encoding

Type IDs

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Data+Encoding+for+Classes
https://doc.zeroc.com/display/Ice34/Data+Encoding+for+Exceptions
https://doc.zeroc.com/display/Ice34/Basic+Data+Encoding
https://doc.zeroc.com/display/Ice34/Type+IDs

	Simple Example of Class Encoding

