
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Simple Example of Class Encoding
To make the more concrete, consider the following class definitions:preceding discussion

Slice

interface SomeInterface {
 void op1();
};

class Base {
 int baseInt;
 void op2();
 string baseString;
};

class Derived extends Base implements SomeInterface {
 bool derivedBool;
 string derivedString;
 void op3();
 double derivedDouble;
};

Note that and have operations, and that also implements the interface . Because marshaling of classes is Base Derived Derived SomeInterface
concerned with state, not behavior, the operations , , and are simply ignored during marshaling and the on-the-wire representation is as op1 op2 op3
if the classes had been defined as follows:

Slice

class Base {
 int baseInt;
 string baseString;
};

class Derived extends Base {
 bool derivedBool;
 string derivedString;
 double derivedDouble;
};

Suppose the sender marshals two instances of (for example, as two in-parameters in the same request) with these member values:Derived

First instance:

Member Type Value Marshaled Size (in
bytes)

baseInt int 99 4

baseString string "Hello" 6

derivedBool bool true 1

 derivedString string "World!" 7

 derivedDouble double 3.14 8

Second instance:

Member Type Value Marshaled Size (in
bytes)

baseInt int 115 4

baseString string "Cave" 5

derivedBool bool false 1

https://doc.zeroc.com/display/Ice34/Data+Encoding+for+Class+Type+IDs

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

 derivedString string "Canem" 6

 derivedDouble double 6.32 8

The sender arbitrarily assigns a non-zero to each instance. Typically, the sender will simply consecutively number the instances starting at . identity 1
For this example, assume that the two instances have the identities and . The marshaled representation for the two instances (assuming that they 1 2
are marshaled immediately following each other) is shown below:

Marshaled Value Size in
Bytes

Type Byte
offset

 1 (identity) 4 int 0

 0 (marker for class type ID) 1 bool 4

 "::Derived" (class type ID) 10 string 5

 20 (byte count for slice) 4 int 15

)1 (derivedBool 1 bool 19

)"World!" (derivedString 7 string 20

)3.14 (derivedDouble 8 double 27

 0 (marker for class type ID) 1 bool 35

 "::Base" (type ID) 7 string 36

 14 (byte count for slice) 4 int 43

)99 (baseInt 4 int 47

)"Hello" (baseString 6 string 51

 0 (marker for class type ID) 1 bool 57

 "::Ice::Object" (class type ID) 14 string 58

 5 (byte count for slice) 4 int 72

 0 (number of dictionary entries) 1 size 76

 2 (identity) 4 int 77

 1 (marker for class type ID) 1 bool 81

 1 (class type ID) 1 size 82

 19 (byte count for slice) 4 int 83

)0 (derivedBool 1 bool 87

)"Canem" (derivedString 6 string 88

)6.32 (derivedDouble 8 double 94

 1 (marker for class type ID) 1 bool 102

 2 (class type ID) 1 size 103

 13 (byte count for slice) 4 int 104

)115 (baseInt 4 int 108

)"Cave" (baseString 5 string 112

 1 (marker for class type ID) 1 bool 117

 3 (class type ID) 1 size 118

 5 (byte count for slice) 4 int 119

 0 (number of dictionary entries) 1 size 123

Note that, because classes (like) are sent as a sequence of , the receiver of a class can slice off any derived parts of a class it does exceptions slices
not understand. Also note that (as shown in the above table) each class instance contains three slices. The third slice is for the type ::Ice::Object
, which is the base type of all classes. The class has the number in this example because it is the third distinct type ID type ID ::Ice::Object 3
that is marshaled by the sender. (See entries at byte offsets 58 and 118 in the above table.) All class instances have this final slice of type ::Ice::

.Object

Marshaling a separate slice for dates back to Ice versions 1.3 and earlier. In those versions, classes carried a facet map that was ::Ice::Object
marshaled as if it were defined as follows:

https://doc.zeroc.com/display/Ice34/Data+Encoding+for+Classes
https://doc.zeroc.com/display/Ice34/Data+Encoding+for+Exceptions
https://doc.zeroc.com/display/Ice34/Basic+Data+Encoding#BasicDataEncoding-slice
https://doc.zeroc.com/display/Ice34/Type+IDs

Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

Slice

module Ice {
 class Object;

 dictionary<string, Object> FacetMap;

 class Object {
 FacetMap facets; // No longer exists
 };
};

As of Ice version 1.4, this facet map is always empty, that is, the count of entries for the dictionary that is marshaled in the slice is ::Ice::Object
always zero. If a receiver receives a class instance with a non-empty facet map, it must throw a .MarshalException

Note that if a class has no data members, a type ID and slice for that class is still marshaled. The byte count of the slice will be 4 in this case,
indicating that the slice contains no data.

See Also

Data Encoding for Classes
Data Encoding for Exceptions
Basic Data Encoding
Type IDs

https://doc.zeroc.com/display/Ice34/Data+Encoding+for+Classes
https://doc.zeroc.com/display/Ice34/Data+Encoding+for+Exceptions
https://doc.zeroc.com/display/Ice34/Basic+Data+Encoding
https://doc.zeroc.com/display/Ice34/Type+IDs

	Simple Example of Class Encoding

