
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

1.
2.

Basic Data Encoding
On this page:

Encoding for Sizes
Encoding for Encapsulations
Encoding for Slices
Encoding for Basic Types
Encoding for Strings
Encoding for Sequences
Encoding for Dictionaries
Encoding for Enumerators
Encoding for Structures

Encoding for Sizes
Many of the types involved in the data encoding, as well as several components, have an associated size or count. A size is a non-protocol message
negative number. Sizes and counts are encoded in one of two ways:

If the number of elements is less than 255, the size is encoded as a single indicating the number of elements.byte
If the number of elements is greater than or equal to 255, the size is encoded as a with value , followed by an indicating the byte 255 int
number of elements.

Using this encoding to indicate sizes is significantly cheaper than always using an to store the size, especially when marshaling sequences of int
short strings: counts of up to 254 require only a single byte instead of four. This comes at the expense of counts greater than 254, which require five
bytes instead of four. However, for sequences or strings of length greater than 254, the extra byte is insignificant.

Encoding for Encapsulations
An encapsulation is used to contain variable-length data that an intermediate receiver may not be able to decode, but that the receiver can forward to
another recipient for eventual decoding. An encapsulation is encoded as if it were the following structure:

Slice

struct Encapsulation {
 int size;
 byte major;
 byte minor;
 // [... size - 6 bytes ...]
};

The member specifies the size of the encapsulation in bytes (including the , , and fields). The and fields size size major minor major minor
specify the of the data contained in the encapsulation. The version information is followed by bytes of encoded data.encoding version size-6

All the data in an encapsulation is context-free, that is, nothing inside an encapsulation can refer to anything outside the encapsulation. This property
allows encapsulations to be forwarded among address spaces as a blob of data.

Encapsulations can be nested, that is, contain other encapsulations.

An encapsulation can be empty, in which case the value of is 6.size

Encoding for Slices
Exceptions and are subject to slicing if the receiver of a value only partially understands the received value (that is, only has knowledge of a classes
base type, but not of the actual run-time derived type). To allow the receiver of an exception or class to ignore those parts of a value that it does not
understand, exception and class values are marshaled as a sequence of slices (one slice for each level of the inheritance hierarchy). A slice is a byte
count encoded as a fixed-length four-byte integer, followed by the data for the slice. (The byte count includes the four bytes occupied by the count
itself, so an empty slice has a byte count of four and no data.) The receiver of a value can skip over a slice by reading the byte count , and then b
discarding the next bytes in the input stream.b-4

https://doc.zeroc.com/display/Ice34/Protocol+Messages
https://doc.zeroc.com/display/Ice34/Protocol+and+Encoding+Versions
https://doc.zeroc.com/display/Ice34/Data+Encoding+for+Exceptions
https://doc.zeroc.com/display/Ice34/Data+Encoding+for+Classes

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

Encoding for Basic Types
The basic types are encoded as shown in the table. Integer types (, ,) are represented as two's complement numbers, and floating short int long
point types (,) use the IEEE standard formats . All numeric types use a little-endian byte order.float double [1]

Type Encoding

bool A single byte with value for , for 1 true 0 false

byte An uninterpreted byte

short Two bytes (LSB, MSB)

int Four bytes (LSB .. MSB)

long Eight bytes (LSB .. MSB)

float Four bytes (23-bit fractional mantissa, 8-bit exponent, sign bit)

double Eight bytes (52-bit fractional mantissa, 11-bit exponent, sign
bit)

Encoding for basic types.

Encoding for Strings
Strings are encoded as a , followed by the string contents in UTF-8 format . Strings are not NUL-terminated. An empty string is encoded with a size [2]
size of zero.

Encoding for Sequences
Sequences are encoded as a representing the number of elements in the sequence, followed by the elements encoded as specified for their size
type.

Encoding for Dictionaries
Dictionaries are encoded as a representing the number of key-value pairs in the dictionary, followed by the pairs. Each key-value pair is encoded size
as if it were a containing the key and value as members, in that order.struct

Encoding for Enumerators
Enumerated values are encoded depending on the number of enumerators:

If the enumeration has 1 - 127 enumerators, the value is marshaled as a .byte
If the enumeration has 128 - 32767 members, the value is marshaled as a .short
If the enumeration has more than 32767 members, the value is marshaled as an .int

The value is the ordinal value of the corresponding enumerator, with the first enumerator value encoded as zero.

Encoding for Structures
The members of a structure are encoded in the order they appear in the declaration, as specified for their types.struct

See Also

Protocol Messages
Protocol and Encoding Versions
Data Encoding for Exceptions
Data Encoding for Classes

https://doc.zeroc.com/display/Ice34/Protocol+Messages
https://doc.zeroc.com/display/Ice34/Protocol+and+Encoding+Versions
https://doc.zeroc.com/display/Ice34/Data+Encoding+for+Exceptions
https://doc.zeroc.com/display/Ice34/Data+Encoding+for+Classes

Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

1.

2.

References

Institute of Electrical and Electronics Engineers. 1985. . Piscataway, NJ: IEEE 754-1985 Standard for Binary Floating-Point Arithmetic
Institute of Electrical and Electronic Engineers.
Unicode Consortium, ed. 2000. . Reading, MA: Addison-Wesley.The Unicode Standard, Version 3.0

http://www.unicode.org/unicode/uni2book/u2.html

	Basic Data Encoding

