
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Asynchronous Method Dispatch (AMD) in Python
The number of simultaneous synchronous requests a server is capable of supporting is determined by the number of threads in the server's thread

. If all of the threads are busy dispatching long-running operations, then no threads are available to process new requests and therefore clients pool
may experience an unacceptable lack of responsiveness.

Asynchronous Method Dispatch (AMD), the server-side equivalent of , addresses this scalability issue. Using AMD, a server can receive a AMI
request but then suspend its processing in order to release the dispatch thread as soon as possible. When processing resumes and the results are
available, the server sends a response explicitly using a callback object provided by the Ice run time.

AMD is transparent to the client, that is, there is no way for a client to distinguish a request that, in the server, is processed synchronously from a
request that is processed asynchronously.

In practical terms, an AMD operation typically queues the request data (i.e., the callback object and operation arguments) for later processing by an
application thread (or thread pool). In this way, the server minimizes the use of dispatch threads and becomes capable of efficiently supporting
thousands of simultaneous clients.

An alternate use case for AMD is an operation that requires further processing after completing the client's request. In order to minimize the client's
delay, the operation returns the results while still in the dispatch thread, and then continues using the dispatch thread for additional work.

On this page:

Enabling AMD with Metadata in Python
AMD Mapping in Python
AMD Exceptions in Python
AMD Example in Python

Enabling AMD with Metadata in Python
To enable asynchronous dispatch, you must add an metadata directive to your Slice definitions. The directive applies at the interface and ["amd"]
the operation level. If you specify at the interface level, all operations in that interface use asynchronous dispatch; if you specify ["amd"] ["amd"]
for an individual operation, only that operation uses asynchronous dispatch. In either case, the metadata directive synchronous dispatch, replaces
that is, a particular operation implementation must use synchronous or asynchronous dispatch and cannot use both.

Consider the following Slice definitions:

Slice

["amd"] interface I {
 bool isValid();
 float computeRate();
};

interface J {
 ["amd"] void startProcess();
 int endProcess();
};

In this example, both operations of interface use asynchronous dispatch, whereas, for interface , uses asynchronous dispatch I J startProcess
and uses synchronous dispatch.endProcess

Specifying metadata at the operation level (rather than at the interface or class level) minimizes the amount of generated code and, more importantly,
minimizes complexity: although the asynchronous model is more flexible, it is also more complicated to use. It is therefore in your best interest to limit
the use of the asynchronous model to those operations that need it, while using the simpler synchronous model for the rest.

AMD Mapping in Python
For each AMD operation, the Python mapping emits a dispatch method with the same name as the operation and the suffix . This method _async
returns . The first parameter is a reference to a callback object, as described below. The remaining parameters comprise the parameters of None in
the operation, in the order of declaration.

The callback object defines two methods:

def ice_response(self, < >)params
The method allows the server to report the successful completion of the operation. If the operation has a non- return ice_response void

https://doc.zeroc.com/display/Ice34/The+Ice+Threading+Model
https://doc.zeroc.com/display/Ice34/The+Ice+Threading+Model
https://doc.zeroc.com/display/Ice34/Asynchronous+Method+Invocation+%28AMI%29+in+Python

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

type, the first parameter to is the return value. Parameters corresponding to the operation's parameters follow the ice_response out
return value, in the order of declaration.

def ice_exception(self, ex)
The method allows the server to report an exception.ice_exception

Neither nor throw any exceptions to the caller.ice_response ice_exception

Suppose we have defined the following operation:

Slice

interface I {
 ["amd"] int foo(short s, out long l);
};

The callback interface generated for operation is shown below:foo

Python

class ...
 #
 # Operation signatures.
 #
 # def ice_response(self, _result, l)
 # def ice_exception(self, ex)

The dispatch method for asynchronous invocation of operation is generated as follows:foo

Python

def foo_async(self, __cb, s)

AMD Exceptions in Python
There are two processing contexts in which the logical implementation of an AMD operation may need to report an exception: the dispatch thread
(the thread that receives the invocation), and the response thread (the thread that sends the response).

Although we recommend that the callback object be used to report all exceptions to the client, it is legal for the implementation to raise an exception
instead, but only from the dispatch thread.

As you would expect, an exception raised from a response thread cannot be caught by the Ice run time; the application's run time environment
determines how such an exception is handled. Therefore, a response thread must ensure that it traps all exceptions and sends the appropriate
response using the callback object. Otherwise, if a response thread is terminated by an uncaught exception, the request may never be completed
and the client might wait indefinitely for a response.

Whether raised in a dispatch thread or reported via the callback object, user exceptions are and local exceptions may undergo .validated translation

AMD Example in Python
To demonstrate the use of AMD in Ice, let us define the Slice interface for a simple computational engine:

These are not necessarily two different threads: it is legal to send the response from the dispatch thread.

https://doc.zeroc.com/display/Ice34/User+Exceptions
https://doc.zeroc.com/display/Ice34/Run-Time+Exceptions

Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

Slice

module Demo {
 sequence<float> Row;
 sequence<Row> Grid;

 exception RangeError {};

 interface Model {
 ["amd"] Grid interpolate(Grid data, float factor)
 throws RangeError;
 };
};

Given a two-dimensional grid of floating point values and a factor, the operation returns a new grid of the same size with the values interpolate
interpolated in some interesting (but unspecified) way.

Our servant class derives from and supplies a definition for the method that creates a to hold the callback Demo.Model interpolate_async Job
object and arguments, and adds the to a queue. The method uses a lock to guard access to the queue:Job

Python

class ModelI(Demo.Model):
 def __init__(self):
 self._mutex = threading.Lock()
 self._jobs = []

 def interpolate_async(self, cb, data, factor, current=None):
 self._mutex.acquire()
 try:
 self._jobs.append(Job(cb, data, factor))
 finally:
 self._mutex.release()

After queuing the information, the operation returns control to the Ice run time, making the dispatch thread available to process another request. An
application thread removes the next from the queue and invokes , which uses (not shown) to perform the Job execute interpolateGrid
computational work:

Python

class Job(object):
 def __init__(self, cb, grid, factor):
 self._cb = cb
 self._grid = grid
 self._factor = factor

 def execute(self):
 if not self.interpolateGrid():
 self._cb.ice_exception(Demo.RangeError())
 return
 self._cb.ice_response(self._grid)

 def interpolateGrid(self):
 # ...

If returns , then is invoked to indicate that a range error has occurred. The statement following interpolateGrid False ice_exception return
the call to is necessary because does not throw an exception; it only marshals the exception argument and ice_exception ice_exception
sends it to the client.

If interpolation was successful, is called to send the modified grid back to the client.ice_response

Ice 3.4.2 Documentation

4 Copyright © 2017, ZeroC, Inc.

See Also

User Exceptions
Run-Time Exceptions
Asynchronous Method Invocation (AMI) in Python
The Ice Threading Model

https://doc.zeroc.com/display/Ice34/User+Exceptions
https://doc.zeroc.com/display/Ice34/Run-Time+Exceptions
https://doc.zeroc.com/display/Ice34/Asynchronous+Method+Invocation+%28AMI%29+in+Python
https://doc.zeroc.com/display/Ice34/The+Ice+Threading+Model

	Asynchronous Method Dispatch (AMD) in Python

