
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

1.

C++ Mapping for Classes
On this page:

Basic C++ Mapping for Classes
Inheritance from Ice::Object in C++
Class Data Members in C++
Class Constructors in C++
Class Operations in C++
Class Factories in C++

Basic C++ Mapping for Classes
A Slice is mapped to a C++ class with the same name. The generated class contains a public data member for each Slice data member (just as class
for and), and a virtual member function for each operation. Consider the following class definition:structures exceptions

Slice

class TimeOfDay {
 short hour; // 0 ? 23
 short minute; // 0 ? 59
 short second; // 0 ? 59
 string format(); // Return time as hh:mm:ss
};

The Slice compiler generates the following code for this definition:

C++

class TimeOfDay;

typedef IceInternal::ProxyHandle<IceProxy::TimeOfDay> TimeOfDayPrx;
typedef IceInternal::Handle<TimeOfDay> TimeOfDayPtr;

class TimeOfDay : virtual public Ice::Object {
public:
 Ice::Short hour;
 Ice::Short minute;
 Ice::Short second;

 virtual std::string format() = 0;

 TimeOfDay() {};
 TimeOfDay(Ice::Short, Ice::Short, Ice::Short);

 virtual bool ice_isA(const std::string&);
 virtual const std::string& ice_id();
 static const std::string& ice_staticId();

 typedef TimeOfDayPrx ProxyType;
 typedef TimeOfDayPtr PointerType;

 // ...
};

There are a number of things to note about the generated code:

The definitions are for template programming.ProxyType and PointerType

https://doc.zeroc.com/display/Ice34/Classes
https://doc.zeroc.com/pages/viewpage.action?pageId=5047919
https://doc.zeroc.com/pages/viewpage.action?pageId=5047911
https://doc.zeroc.com/pages/viewpage.action?pageId=5047914#C++MappingforInterfaces-proxytype

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

1.

2.
3.
4.
5.
6.

The generated class inherits from . This means that all classes implicitly inherit from , which is the TimeOfDay Ice::Object Ice::Object
ultimate ancestor of all classes. Note that is the same as . In other words, you pass a Ice::Object not IceProxy::Ice::Object cannot
class where a proxy is expected and vice versa.
The generated class contains a public member for each Slice data member.
The generated class has a constructor that takes one argument for each data member, as well as a default constructor.
The generated class contains a pure virtual member function for each Slice operation.
The generated class contains additional member functions: , , , and .ice_isA ice_id ice_staticId ice_factory
The compiler generates a type definition . This type implements a smart pointer that wraps dynamically-allocated instances TimeOfDayPtr
of the class. In general, the name of this type is . Do not confuse this with — that type exists as Ptr<class-name> Prx<class-name>
well, but is the proxy handle for the class, not a smart pointer.

There is quite a bit to discuss here, so we will look at each item in turn.

Inheritance from in C++Ice::Object
Like interfaces, classes implicitly inherit from a common base class, . However, as shown in the figure below, classes inherited from Ice::Object Ic

 instead of (which is at the base of the inheritance hierarchy for proxies). As a result, you cannot pass a class where a e::Object Ice::ObjectPrx
proxy is expected (and vice versa) because the base types for classes and proxies are not compatible.

Inheritance from and .Ice::ObjectPrx Ice::Object

Ice::Object contains a number of member functions:

C++

namespace Ice {
 class Object : public virtual IceInternal::GCShared {
 public:
 virtual bool ice_isA(const std::string&, const Current& = Current()) const;
 virtual void ice_ping(const Current& = Current()) const;
 virtual std::vector<std::string> ice_ids(const Current& = Current()) const;
 virtual const std::string& ice_id(const Current& = Current()) const;
 static const std::string& ice_staticId();
 virtual Ice::Int ice_getHash() const;
 virtual ObjectPtr ice_clone() const;

 virtual void ice_preMarshal();
 virtual void ice_postUnmarshal();

 virtual DispatchStatus ice_dispatch(
 Ice::Request&,
 const DispatchInterceptorAsyncCallbackPtr& = 0);

 virtual bool operator==(const Object&) const;
 virtual bool operator!=(const Object&) const;
 virtual bool operator<(const Object&) const;
 virtual bool operator<=(const Object&) const;
 virtual bool operator>(const Object&) const;
 virtual bool operator>=(const Object&) const;
 };
}

Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

The member functions of behave as follows:Ice::Object

ice_isA
This function returns if the object supports the given , and otherwise.true type ID false

ice_ping
As for interfaces, provides a basic reachability test for the class. Note that is normally only invoked on the proxy for a ice_ping ice_ping
class that might be remote because a class instance that is local (in the caller's address space) can always be reached.

ice_ids
This function returns a string sequence representing all of the supported by this object, including .type IDs ::Ice::Object

ice_id
This function returns the actual run-time for a class. If you call through a smart pointer to a base instance, the returned type type ID ice_id
id is the actual (possibly more derived) type ID of the instance.

ice_staticId
This function returns the static type ID of a class.

ice_getHash
This method returns a hash value for the class, allowing you to easily place classes into hash tables.

ice_clone
This function makes a .polymorphic shallow copy of a class

ice_preMarshal
The Ice run time invokes this function prior to marshaling the object's state, providing the opportunity for a subclass to validate its declared
data members.

ice_postUnmarshal
The Ice run time invokes this function after unmarshaling an object's state. A subclass typically overrides this function when it needs to
perform additional initialization using the values of its declared data members.

ice_dispatch
This function dispatches an incoming request to a servant. It is used in the implementation of .dispatch interceptors

operator==
operator!=
operator<
operator<=
operator>
operator>=
The comparison operators permit you to use classes as elements of STL sorted containers. Note that sort order, unlike for , is structures
based on the memory address of the class, not on the contents of its data members of the class.

Class Data Members in C++
By default, data members of classes are mapped exactly as for structures and exceptions: for each data member in the Slice definition, the
generated class contains a corresponding public data member.

If you wish to restrict access to a data member, you can modify its visibility using the metadata directive. The presence of this directive protected
causes the Slice compiler to generate the data member with protected visibility. As a result, the member can be accessed only by the class itself or
by one of its subclasses. For example, the class shown below has the metadata directive applied to each of its data TimeOfDay protected
members:

Slice

class TimeOfDay {
 ["protected"] short hour; // 0 ? 23
 ["protected"] short minute; // 0 ? 59
 ["protected"] short second; // 0 ? 59
 string format(); // Return time as hh:mm:ss
};

The Slice compiler produces the following generated code for this definition:

https://doc.zeroc.com/display/Ice34/Type+IDs
https://doc.zeroc.com/display/Ice34/Type+IDs
https://doc.zeroc.com/display/Ice34/Type+IDs
https://doc.zeroc.com/display/Ice34/Smart+Pointers+for+Classes#SmartPointersforClasses-polymorphic
https://doc.zeroc.com/display/Ice34/Dispatch+Interceptors
https://doc.zeroc.com/pages/viewpage.action?pageId=5047919#C++MappingforStructures-default

Ice 3.4.2 Documentation

4 Copyright © 2017, ZeroC, Inc.

C++

class TimeOfDay : virtual public Ice::Object {
public:

 virtual std::string format() = 0;

 // ...

protected:

 Ice::Short hour;
 Ice::Short minute;
 Ice::Short second;
};

For a class in which all of the data members are protected, the metadata directive can be applied to the class itself rather than to each member
individually. For example, we can rewrite the class as follows:TimeOfDay

Slice

["protected"] class TimeOfDay {
 short hour; // 0 ? 23
 short minute; // 0 ? 59
 short second; // 0 ? 59
 string format(); // Return time as hh:mm:ss
};

Class Constructors in C++
Classes have a default constructor that default-constructs each data member. Members having a complex type, such as strings, sequences, and
dictionaries, are initialized by their own default constructor. However, the default constructor performs no initialization for members having one of the
simple built-in types boolean, integer, floating point, or enumeration. For such a member, it is not safe to assume that the member has a reasonable
default value. This is especially true for enumerated types as the member's default value may be outside the legal range for the enumeration, in
which case an exception will occur during marshaling unless the member is explicitly set to a legal value.

To ensure that data members of primitive types are initialized to reasonable values, you can declare default values in your . The Slice definition
default constructor initializes each of these data members to its declared value.

Classes also have a second constructor that has one parameter for each data member. This allows you to construct and initialize a class instance in
a single statement (instead of first having to construct the instance and then assign to its members).

For derived classes, the constructor has one parameter for each of the base class's data members, plus one parameter for each of the derived
class's data members, in base-to-derived order. For example:

Slice

class Base {
 int i;
};

class Derived extends Base {
 string s;
};

This generates:

https://doc.zeroc.com/display/Ice34/Classes

Ice 3.4.2 Documentation

5 Copyright © 2017, ZeroC, Inc.

C++

class Base : virtual public ::Ice::Object
{
public:
 ::Ice::Int i;

 Base() {};
 explicit Base(::Ice::Int);

 // ...
};

class Derived : public Base
{
public:
 ::std::string s;

 Derived() {};
 Derived(::Ice::Int, const ::std::string&);

 // ...
};

Note that single-parameter constructors are defined as , to prevent implicit argument conversions.explicit
By default, derived classes derive non-virtually from their base class. If you need virtual inheritance, you can enable it using the ["cpp:virtual"]
metadata directive.

Class Operations in C++
Operations of classes are mapped to pure virtual member functions in the generated class. This means that, if a class contains operations (such as
the operation of our class), you must provide an implementation of the operation in a class that is derived from the generated format TimeOfDay
class. For example:

C++

class TimeOfDayI : virtual public TimeOfDay {
public:
 virtual std::string format() {
 std::ostringstream s;
 s << setw(2) << setfill('0') << hour << ":";
 s << setw(2) << setfill('0') << minute << ":";
 s << setw(2) << setfill('0') << second;
 return s.c_str();
 }

protected:
 virtual ~TimeOfDayI() {} // Optional
};

Class Factories in C++
Having created a class such as , we have an implementation and we can instantiate the class, but we cannot receive it as TimeOfDayI TimeOfDayI
the return value or as an out-parameter from an operation invocation. To see why, consider the following simple interface:

We discuss the motivation for the protected destructor in .Preventing Stack-Allocation of Class Instances

https://doc.zeroc.com/display/Ice34/Slice+Metadata+Directives
https://doc.zeroc.com/display/Ice34/Smart+Pointers+for+Classes#SmartPointersforClasses-stack

Ice 3.4.2 Documentation

6 Copyright © 2017, ZeroC, Inc.

Slice

interface Time {
 TimeOfDay get();
};

When a client invokes the operation, the Ice run time must instantiate and return an instance of the class. However, is get TimeOfDay TimeOfDay
an abstract class that cannot be instantiated. Unless we tell it, the Ice run time cannot magically know that we have created a class that TimeOfDayI
implements the abstract operation of the abstract class. In other words, we must provide the Ice run time with a factory that format TimeOfDay
knows that the abstract class has a concrete implementation. The interface provides us with the TimeOfDay TimeOfDayI Ice::Communicator
necessary operations:

Slice

module Ice {
 local interface ObjectFactory {
 Object create(string type);
 void destroy();
 };

 local interface Communicator {
 void addObjectFactory(ObjectFactory factory, string id);
 ObjectFactory findObjectFactory(string id);
 // ...
 };
};

To supply the Ice run time with a factory for our class, we must implement the interface:TimeOfDayI ObjectFactory

Slice

module Ice {
 local interface ObjectFactory {
 Object create(string type);
 void destroy();
 };
};

The object factory's operation is called by the Ice run time when it needs to instantiate a class. The factory's operation create TimeOfDay destroy
is called by the Ice run time when its communicator is destroyed. A possible implementation of our object factory is:

C++

class ObjectFactory : public Ice::ObjectFactory {
public:
 virtual Ice::ObjectPtr create(const std::string& type) {
 assert(type == M::TimeOfDay::ice_staticId());
 return new TimeOfDayI;
 }
 virtual void destroy() {}
};

The method is passed the of the class to instantiate. For our class, the type ID is . Our create type ID TimeOfDay "::M::TimeOfDay"
implementation of checks the type ID: if it matches, the method instantiates and returns a object. For other type IDs, the create TimeOfDayI
method asserts because it does not know how to instantiate other types of objects.

https://doc.zeroc.com/display/Ice34/Type+IDs

Ice 3.4.2 Documentation

7 Copyright © 2017, ZeroC, Inc.

Note that we used the method to obtain the type ID rather than embedding a literal string. Using a literal type ID string in your code ice_staticId
is discouraged because it can lead to errors that are only detected at run time. For example, if a Slice class or one of its enclosing modules is
renamed and the literal string is not changed accordingly, a receiver will fail to unmarshal the object and the Ice run time will raise NoObjectFactor

. By using instead, we avoid any risk of a misspelled or obsolete type ID, and we can discover at compile time if a Slice yException ice_staticId
class or module has been renamed.

Given a factory implementation, such as our , we must inform the Ice run time of the existence of the factory:ObjectFactory

C++

Ice::CommunicatorPtr ic = ...;
ic->addObjectFactory(new ObjectFactory, M::TimeOfDay::ice_staticId());

Now, whenever the Ice run time needs to instantiate a class with the type ID , it calls the method of the registered "::M::TimeOfDay" create Obje
 instance.ctFactory

The operation of the object factory is invoked by the Ice run time when the communicator is destroyed. This gives you a chance to clean up destroy
any resources that may be used by your factory. Do not call on the factory while it is registered with the communicator — if you do, the Ice destroy
run time has no idea that this has happened and, depending on what your implementation is doing, may cause undefined behavior when destroy
the Ice run time tries to next use the factory.

The run time guarantees that will be the last call made on the factory, that is, will not be called concurrently with , and destroy create destroy cre
 will not be called once has been called. However, calls to can be made concurrently.ate destroy create

Note that you cannot register a factory for the same type ID twice: if you call with a type ID for which a factory is registered, the addObjectFactory
Ice run time throws an .AlreadyRegisteredException

Finally, keep in mind that if a class has only data members, but no operations, you need not create and register an object factory to transmit
instances of such a class. Only if a class has operations do you have to define and register an object factory.

See Also

Classes
Smart Pointers for Classes
C++ Mapping for Operations
Asynchronous Method Invocation (AMI) in C++
Dispatch Interceptors

https://doc.zeroc.com/display/Ice34/Classes
https://doc.zeroc.com/display/Ice34/Smart+Pointers+for+Classes
https://doc.zeroc.com/pages/viewpage.action?pageId=5047922
https://doc.zeroc.com/pages/viewpage.action?pageId=5047916
https://doc.zeroc.com/display/Ice34/Dispatch+Interceptors

	C++ Mapping for Classes

