
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

C++ Mapping for Exceptions
On this page:

C++ Mapping for User Exceptions
C++ Default Constructors for Exceptions
C++ Mapping for Run-Time Exceptions

C++ Mapping for User Exceptions
Here is a fragment of the once more:Slice definition for our world time server

Slice

exception GenericError {
 string reason;
};
exception BadTimeVal extends GenericError {};
exception BadZoneName extends GenericError {};

These exception definitions map as follows:

C++

class GenericError: public Ice::UserException {
public:
 std::string reason;

 GenericError() {}
 explicit GenericError(const string&);

 virtual const std::string& ice_name() const;
 virtual Ice::Exception* ice_clone() const;
 virtual void ice_throw() const;
 // Other member functions here...
};

class BadTimeVal: public GenericError {
public:
 BadTimeVal() {}
 explicit BadTimeVal(const string&);

 virtual const std::string& ice_name() const;
 virtual Ice::Exception* ice_clone() const;
 virtual void ice_throw() const;
 // Other member functions here...
};

class BadZoneName: public GenericError {
public:
 BadZoneName() {}
 explicit BadZoneName(const string&);

 virtual const std::string& ice_name() const;
 virtual Ice::Exception* ice_clone() const;
 virtual void ice_throw() const;
};

Each Slice exception is mapped to a C++ class with the same name. For each exception member, the corresponding class contains a public data
member. (Since and do not have members, the generated classes for these exceptions also do not have members.)BadTimeVal BadZoneName

https://doc.zeroc.com/display/Ice34/Proxies

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

The inheritance structure of the Slice exceptions is preserved for the generated classes, so and inherit from BadTimeVal BadZoneName GenericEr
.ror

Each exception has three additional member functions:

ice_name
As the name suggests, this member function returns the name of the exception. For example, if you call the member function of ice_name
a exception, it (not surprisingly) returns the string . The member function is useful if you catch BadZoneName "BadZoneName" ice_name
exceptions generically and want to produce a more meaningful diagnostic, for example:

C++

try {
 // ...
} catch (const GenericError& e) {
 cerr << "Caught an exception: " << e.ice_name() << endl;
}

If an exception is raised, this code prints the name of the actual exception (or) because the exception is being BadTimeVal BadZoneName
caught by reference (to avoid slicing).

ice_clone
This member function allows you to polymorphically clone an exception. For example:

C++

try {
 // ...
} catch (const Ice::UserException& e) {
 Ice::UserException* copy = e.clone();
}

 is useful if you need to make a copy of an exception without knowing its precise run-time type. This allows you to remember the ice_clone
exception and throw it later by calling .ice_throw

ice_throw
 allows you to throw an exception without knowing its precise run-time type. It is implemented as:ice_throw

C++

void
GenericError::ice_throw() const
{
 throw *this;
}

You can call to throw an exception that you previously cloned with .ice_throw ice_clone

Each exception has a default constructor. This constructor performs memberwise initialization; for simple built?in types, such as integers, the
constructor performs no initialization, whereas complex types such as strings, sequences, and dictionaries are initialized by their respective default
constructors.

An exception also has a second constructor that accepts one argument for each exception member. This constructor allows you to instantiate and
initialize an exception in a single statement, instead of having to first instantiate the exception and then assign to its members. For derived
exceptions, the constructor accepts one argument for each base exception member, plus one argument for each derived exception member, in base-
to-derived order.

Note that the generated exception classes contain other member functions that are not shown here. However, those member functions are internal to
the C++ mapping and are not meant to be called by application code.

All user exceptions ultimately inherit from . In turn, inherits from (which is an Ice::UserException Ice::UserException Ice::Exception
alias for):IceUtil::Exception

Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

C++

namespace IceUtil {
 class Exception {
 virtual const std::string& ice_name() const;
 Exception* ice_clone() const;
 void ice_throw() const;
 virtual void ice_print(std::ostream&) const;
 // ...
 };
 std::ostream& operator<<(std::ostream&, const Exception&);
 // ...
}

namespace Ice {
 typedef IceUtil::Exception Exception;

 class UserException: public Exception {
 public:
 virtual const std::string& ice_name() const = 0;
 // ...
 };
}

Ice::Exception forms the root of the exception inheritance tree. Apart from the usual , , and member ice_name ice_clone ice_throw
functions, it contains the member functions. prints the name of the exception. For example, calling on a ice_print ice_print ice_print BadTim

 exception prints:eVal

BadTimeVal

To make printing more convenient, is overloaded for , so you can also write:operator<< Ice::Exception

C++

try {
 // ...
} catch (const Ice::Exception& e) {
 cerr << e << endl;
}

This produces the same output because calls internally.operator<< ice_print

For Ice run time exceptions, also shows the file name and line number at which the exception was thrown.ice_print

C++ Default Constructors for Exceptions
Exceptions have a default constructor that default-constructs each data member. Members having a complex type, such as strings, sequences, and
dictionaries, are initialized by their own default constructor. However, the default constructor performs no initialization for members having one of the
simple built-in types boolean, integer, floating point, or enumeration. For such a member, it is not safe to assume that the member has a reasonable
default value. This is especially true for enumerated types as the member's default value may be outside the legal range for the enumeration, in
which case an exception will occur during marshaling unless the member is explicitly set to a legal value.

To ensure that data members of primitive types are initialized to reasonable values, you can declare in your Slice definition. The default values
default constructor initializes each of these data members to its declared value.

Exceptions also have a second constructor that has one parameter for each data member. This allows you to construct and initialize a class instance
in a single statement (instead of first having to construct the instance and then assign to its members). For derived exceptions, this constructor has
one parameter for each of the base class's data members, plus one parameter for each of the derived class's data members, in base-to-derived order.

C++ Mapping for Run-Time Exceptions

https://doc.zeroc.com/display/Ice34/User+Exceptions

Ice 3.4.2 Documentation

4 Copyright © 2017, ZeroC, Inc.

The Ice run time throws run-time exceptions for a number of pre-defined error conditions. All run-time exceptions directly or indirectly derive from Ice
 (which, in turn, derives from). has the usual member functions: , ::LocalException Ice::Exception Ice::LocalException ice_name ice_

, , and (inherited from), , , and .clone ice_throw Ice::Exception ice_print ice_file ice_line

Recall the for user and run-time exceptions. By catching exceptions at the appropriate point in the hierarchy, you can handle inheritance diagram
exceptions according to the category of error they indicate:

Ice::Exception
This is the root of the complete inheritance tree. Catching catches both user and run-time exceptions.Ice::Exception

Ice::UserException
This is the root exception for all user exceptions. Catching catches all user exceptions (but not run-time exceptions).Ice::UserException

Ice::LocalException
This is the root exception for all run-time exceptions. Catching catches all run-time exceptions (but not user Ice::LocalException
exceptions).

Ice::TimeoutException
This is the base exception for both operation-invocation and connection-establishment timeouts.

Ice::ConnectTimeoutException
This exception is raised when the initial attempt to establish a connection to a server times out.

For example, a can be handled as , , , or ConnectTimeoutException ConnectTimeoutException TimeoutException LocalException Exc
.eption

You will probably have little need to catch run-time exceptions as their most-derived type and instead catch them as ; the fine-LocalException
grained error handling offered by the remainder of the hierarchy is of interest mainly in the implementation of the Ice run time. Exceptions to this rule
are the exceptions related to and life cycles, which you may want to catch explicitly. These exceptions are facet object FacetNotExistException
and , respectively.ObjectNotExistException

See Also

User Exceptions
Run-Time Exceptions
C++ Mapping for Identifiers
C++ Mapping for Modules
C++ Mapping for Built-In Types
C++ Mapping for Enumerations
C++ Mapping for Structures
C++ Mapping for Sequences
C++ Mapping for Dictionaries
C++ Mapping for Constants
Facets and Versioning
Object Life Cycle

https://doc.zeroc.com/display/Ice34/Run-Time+Exceptions#RunTimeExceptions-InheritanceHierarchyforExceptions
https://doc.zeroc.com/display/Ice34/Facets+and+Versioning
https://doc.zeroc.com/display/Ice34/Object+Life+Cycle
https://doc.zeroc.com/display/Ice34/User+Exceptions
https://doc.zeroc.com/display/Ice34/Run-Time+Exceptions
https://doc.zeroc.com/pages/viewpage.action?pageId=5047920
https://doc.zeroc.com/pages/viewpage.action?pageId=5047923
https://doc.zeroc.com/pages/viewpage.action?pageId=5047921
https://doc.zeroc.com/pages/viewpage.action?pageId=5047917
https://doc.zeroc.com/pages/viewpage.action?pageId=5047919
https://doc.zeroc.com/pages/viewpage.action?pageId=5047915
https://doc.zeroc.com/pages/viewpage.action?pageId=5047918
https://doc.zeroc.com/pages/viewpage.action?pageId=5047924
https://doc.zeroc.com/display/Ice34/Facets+and+Versioning
https://doc.zeroc.com/display/Ice34/Object+Life+Cycle

	C++ Mapping for Exceptions

