
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Server-Side C++ Mapping for Interfaces
The server-side mapping for interfaces provides an up-call API for the Ice run time: by implementing virtual functions in a servant class, you provide 
the hook that gets the thread of control from the Ice server-side run time into your application code.

On this page:

Skeleton Classes in C++
Servant Classes in C++

Normal and idempotent Operations in C++

Skeleton Classes in C++
On the client side, interfaces map to . On the server side, interfaces map to  classes. A skeleton is a class that has a pure proxy classes skeleton
virtual member function for each operation on the corresponding interface. For example, consider our  for the  interface:Slice definition Node

Slice

module Filesystem {
    interface Node {
        idempotent string name();
    };
    // ...
};

The Slice compiler generates the following definition for this interface:

C++

namespace Filesystem {

    class Node : virtual public Ice::Object {
    public:
        virtual std::string name(const Ice::Current& = Ice::Current()) = 0;
        // ...
    };
    // ...
}

For the moment, we will ignore a number of other member functions of this class. The important points to note are:

As for the client side, Slice modules are mapped to C++ namespaces with the same name, so the skeleton class definition is nested in the 
namespace .Filesystem
The name of the skeleton class is the same as the name of the Slice interface ( ).Node
The skeleton class contains a pure virtual member function for each operation in the Slice interface.
The skeleton class is an abstract base class because its member functions are pure virtual.
The skeleton class inherits from  (which forms the root of the Ice object hierarchy).Ice::Object

Servant Classes in C++
In order to provide an implementation for an Ice object, you must create a servant class that inherits from the corresponding skeleton class. For 
example, to create a servant for the  interface, you could write:Node

https://doc.zeroc.com/pages/viewpage.action?pageId=5047914
https://doc.zeroc.com/display/Ice34/Slice+for+a+Simple+File+System


Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

C++

#include <Filesystem.h> // Slice-generated header

class NodeI : public virtual Filesystem::Node {
public:
    NodeI(const std::string&);
    virtual std::string name(const Ice::Current&);
private:
    std::string _name;
};

By convention, servant classes have the name of their interface with an -suffix, so the servant class for the  interface is called . (This is I Node NodeI
a convention only: as far as the Ice run time is concerned, you can choose any name you prefer for your servant classes.)

Note that  inherits from , that is, it derives from its skeleton class. It is a good idea to always use virtual inheritance when NodeI Filesystem::Node
defining servant classes. Strictly speaking, virtual inheritance is necessary only for servants that implement interfaces that use multiple inheritance; 
however, the  keyword does no harm and, if you add multiple inheritance to an interface hierarchy half-way through development, you do virtual
not have to go back and add a  keyword to all your servant classes.virtual

As far as Ice is concerned, the  class must implement only a single member function: the pure virtual  function that it inherits from its NodeI name
skeleton. This makes the servant class a concrete class that can be instantiated. You can add other member functions and data members as you see 
fit to support your implementation. For example, in the preceding definition, we added a  member and a constructor. Obviously, the constructor _name
initializes the  member and the  function returns its value:_name name

C++

NodeI::NodeI(const std::string& name) : _name(name)
{
}

std::string
NodeI::name(const Ice::Current&) const
{
    return _name;
}

Normal and  Operations in C++idempotent

The  member function of the  skeleton is not a  member function. However, given that the operation does not modify the state of its name NodeI const
object, it really should be a  member function. We can achieve this by adding the  metadata directive. For example:const ["cpp:const"]

Slice

interface Example {
                void normalOp();

    idempotent  void idempotentOp();

    ["cpp:const"]
    idempotent  void readonlyOp();
};

The skeleton class for this interface looks like this:



Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

C++

class Example : virtual public Ice::Object {
public:
    virtual void normalOp(const Ice::Current& = Ice::Current()) = 0;
    virtual void idempotentOp(const Ice::Current& = Ice::Current()) = 0;
    virtual void readonlyOp(const Ice::Current& = Ice::Current()) const = 0;
    // ...
};

Note that  is mapped as a  member function due to the  metadata directive; normal and  readonlyOp const ["cpp:const"] idempotent
operations (without the metadata directive) are mapped as ordinary, non-  member functions.const

See Also

Slice for a Simple File System
C++ Mapping for Interfaces
Parameter Passing in C++
Raising Exceptions in C++

https://doc.zeroc.com/display/Ice34/Slice+for+a+Simple+File+System
https://doc.zeroc.com/pages/viewpage.action?pageId=5047914
https://doc.zeroc.com/pages/viewpage.action?pageId=5047928
https://doc.zeroc.com/pages/viewpage.action?pageId=5047932

	Server-Side C++ Mapping for Interfaces

