
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

The C++ Shared and SimpleShared Classes
IceUtil::Shared and are base classes that implement the reference-counting mechanism for . The IceUtil::SimpleShared smart pointers
two classes provide identical interfaces; the difference between and is that is not thread-safe and, Shared SimpleShared SimpleShared
therefore, can only be used if the corresponding class instances are accessed only by a single thread. (is marginally faster than SimpleShared Shar

 because it avoids the locking overhead that is incurred by .)ed Shared

The interface of looks as follows. (Because has the same interface, we do not show it separately here.)Shared SimpleShared

C++

class Shared {
public:
 Shared();
 Shared(const Shared&);
 virtual ~Shared();

 Shared& operator=(const Shared&);

 virtual void __incRef();
 virtual void __decRef();
 virtual int __getRef() const;
 virtual void __setNoDelete(bool);
};

The class maintains a reference that is initialized to zero by the constructor. increments the reference count and decrements it. __incRef __decRef
If, during a call to , after decrementing the reference count, the reference count drops to zero, calls , which __decRef __decRef delete this
causes the corresponding class instance to delete itself. The copy constructor increments the reference count of the copied instance, and the
assignment operator increments the reference count of the source and decrements the reference count of the target.

The member function returns the value of the reference count and is useful mainly for debugging.__getRef

The member function can be used to temporarily disable self-deletion and re-enable it again. This provides when __setNoDelete exception safety
you initialize a smart pointer with the pointer of a class instance during construction.this

To create a class that is reference-counted, you simply derive the class from and define a smart pointer type for the class, for example:Shared

C++

class MyClass : public IceUtil::Shared {
 // ...
};

typedef IceUtil::Handle<MyClass> MyClassPtr;

See Also

The C++ Handle Template
Smart Pointers for Classes

https://doc.zeroc.com/pages/viewpage.action?pageId=5047934
https://doc.zeroc.com/display/Ice34/Smart+Pointers+for+Classes#SmartPointersforClasses-SmartPointersandExceptionSafety
https://doc.zeroc.com/pages/viewpage.action?pageId=5047934
https://doc.zeroc.com/display/Ice34/Smart+Pointers+for+Classes

	The C++ Shared and SimpleShared Classes

