
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Advanced Topics for Deprecated AMI Mapping
On this page:

AMI Concurrency Issues
Flow Control using Deprecated AMI Mapping

Implementing ice_sent in C++
Implementing ice_sent in Java
Implementing ice_sent in C#
Implementing ice_sent in Python

Flushing Batch Requests using Deprecated AMI Mapping
C++ Mapping
Java Mapping
C# Mapping
Python Mapping

Handling Timeouts with Deprecated AMI Mapping
Handling Errors with Deprecated AMI Mapping
AMI Limitations

AMI Concurrency Issues
Support for asynchronous invocations in Ice is enabled by the client , whose threads are primarily responsible for processing reply thread pool
messages. It is important to understand the concurrency issues associated with asynchronous invocations:

A callback object must not be used for multiple simultaneous invocations. An application that needs to aggregate information from multiple 
replies can create a separate object to which the callback objects delegate.
Calls to the callback object are always made by threads from an Ice thread pool, therefore synchronization may be necessary if the 
application might interact with the callback object at the same time as the reply arrives. Furthermore, since the Ice run time never invokes 
callback methods from the client's calling thread, the client can safely make AMI invocations while holding a lock without risk of a deadlock.
The number of threads in the client thread pool determines the maximum number of simultaneous callbacks possible for asynchronous 
invocations. The default size of the client thread pool is one, meaning invocations on callback objects are serialized. If the size of the thread 
pool is increased, the application may require synchronization, and replies can be dispatched out of order. The client thread pool can also 
be configured to  received over a connection so that AMI replies from a connection are dispatched in the order they are serialize messages
received.
A  of AMI is the lack of support for collocation optimization. As a result, AMI invocations are always sent "over the wire" and thus limitation
are dispatched by the server thread pool.

Flow Control using Deprecated AMI Mapping
The Ice run time queues asynchronous requests when necessary to avoid blocking the calling thread, but places no upper limit on the number of 
queued requests or the amount of memory they can consume. To prevent unbounded memory utilization, Ice provides the infrastructure necessary 
for an application to implement its own flow-control logic by combining the following API components:

The return value of the asynchronous proxy method
The  method in the AMI callback objectice_sent

The return value of the proxy method determines whether the request was queued. If the proxy method returns true, no flow control is necessary 
because the request was accepted by the local transport buffer and therefore the Ice run time did not need to queue it. In this situation, the Ice run 
time does not invoke the  method on the callback object; the return value of the proxy method is sufficient notification that the request was ice_sent
sent.

If the proxy method returns false, the Ice run time has queued the request. Now the application must decide how to proceed with subsequent 
invocations:

The application can be structured so that at most one request is queued. For example, the next invocation can be initiated when the ice_se
 method is called for the previous invocation.nt

A more sophisticated solution is to establish a maximum allowable number of queued requests and maintain a counter (with appropriate 
synchronization) to regulate the flow of invocations.

Naturally, the requirements of the application must dictate an implementation strategy.

Implementing  in C++ice_sent

To indicate its interest in receiving  invocations, an AMI callback object must also derive from the C++ class :ice_sent Ice::AMISentCallback

https://doc.zeroc.com/display/Ice34/The+Ice+Threading+Model
https://doc.zeroc.com/display/Ice34/Thread+Pool+Design+Considerations


Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

C++

namespace Ice {
    class AMISentCallback {
    public:
        virtual ~AMISentCallback();
        virtual void ice_sent() = 0;
    };
}

We can modify our  to include an  callback as shown below:sample client ice_sent

C++

class AMI_Model_interpolateI : public Demo::AMI_Model_interpolate,
                               public Ice::AMISentCallback
{
public:
    // ...

    virtual void ice_sent()
    {
        cout << "request sent successfully" << endl;
    }
};

Implementing  in Javaice_sent

To indicate its interest in receiving  invocations, an AMI callback object must also implement the Java interface :ice_sent Ice.AMISentCallback

Java

package Ice;

public interface AMISentCallback {
    void ice_sent();
}

We can modify our  to include an  callback as shown below:sample client ice_sent

Java

class AMI_Model_interpolateI extends Demo.AMI_Model_interpolate
                             implements Ice.AMISentCallback {
    // ...

    public void ice_sent()
    {
        System.out.println("request sent successfully");
    }
}

Implementing  in C#ice_sent

To indicate its interest in receiving  invocations, an AMI callback object must also implement the C# interface :ice_sent Ice.AMISentCallback

https://doc.zeroc.com/display/Ice34/Deprecated+AMI+Language+Mappings#DeprecatedAMILanguageMappings-example
https://doc.zeroc.com/display/Ice34/Deprecated+AMI+Language+Mappings#DeprecatedAMILanguageMappings-example


Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

C#

namespace Ice {
    public interface AMISentCallback
    {
        void ice_sent();
    }
}

We can modify our  to include an  callback as shown below:sample client ice_sent

C#

class AMI_Model_interpolateI : Demo.AMI_Model_interpolate,
                               Ice.AMISentCallback {
    // ...

    public void ice_sent()
    {
        Console.Out.WriteLine("request sent successfully");
    }
}

Implementing  in Pythonice_sent

To indicate its interest in receiving  invocations, an AMI callback object need only define the  method.ice_sent ice_sent

We can modify our  to include an  callback as shown below:sample client ice_sent

Python

class AMI_Model_interpolateI(object):
    # ...

  def ice_sent(self):
      print "request sent successfully"

Flushing Batch Requests using Deprecated AMI Mapping
Applications that send  can either flush a batch explicitly or allow the Ice run time to flush automatically. The proxy method batched requests ice_flu

 performs an immediate flush using the synchronous invocation model and may block the calling thread until the entire message shBatchRequests
can be sent. Ice also provides an asynchronous version of this method for applications that wish to flush batch requests without the risk of blocking.

The proxy method  initiates an asynchronous flush. Its only argument is a callback object; this object must ice_flushBatchRequests_async
define an  method for receiving a notification if an error occurs before the message is sent.ice_exception

If the application is interested in , the return value of  is a boolean indicating whether the message flow control ice_flushBatchRequests_async
was sent synchronously. Furthermore, the callback object can define an  method that is invoked when an asynchronous flush completes.ice_sent

C++ Mapping

The base proxy class  defines the asynchronous flush operation as shown below:ObjectPrx

https://doc.zeroc.com/display/Ice34/Deprecated+AMI+Language+Mappings#DeprecatedAMILanguageMappings-example
https://doc.zeroc.com/display/Ice34/Deprecated+AMI+Language+Mappings#DeprecatedAMILanguageMappings-example
https://doc.zeroc.com/display/Ice34/Batched+Invocations


Ice 3.4.2 Documentation

4 Copyright © 2017, ZeroC, Inc.

C++

namespace Ice {
    class ObjectPrx : ... {
    public:
        // ...
        bool ice_flushBatchRequests_async(
            const Ice::AMI_Object_ice_flushBatchRequestsPtr& cb)
    };
}

The argument is a smart pointer for an object that implements the following class:

C++

namespace Ice {
    class AMI_Object_ice_flushBatchRequests : ... {
    public:
        virtual void ice_exception(const Ice::Exception& ex) = 0;
    };
}

As an example, the class below demonstrates how to define a callback class that also receives a notification when the asynchronous flush completes:

C++

class MyFlushCallbackI : public Ice::AMI_Object_ice_flushBatchRequests,
                         public Ice::AMISentCallback
{
public:
    virtual void ice_exception(const Ice::Exception& ex);
    virtual void ice_sent();
};

Java Mapping

The base proxy class  defines the asynchronous flush operation as shown below:ObjectPrx

Java

package Ice;

public class ObjectPrx ... {
    // ...
    boolean ice_flushBatchRequests_async(AMI_Object_ice_flushBatchRequests cb);
}

The argument is a reference for an object that implements the following class:



Ice 3.4.2 Documentation

5 Copyright © 2017, ZeroC, Inc.

Java

package Ice;

public abstract class AMI_Object_ice_flushBatchRequests ...
{
    public abstract void ice_exception(LocalException ex);
}

As an example, the class below demonstrates how to define a callback class that also receives a notification when the asynchronous flush completes:

Java

class MyFlushCallbackI extends Ice.AMI_Object_ice_flushBatchRequests
                       implements Ice.AMISentCallback
{
    public void ice_exception(Ice.LocalException ex) { ... }
    public void ice_sent() { ... }
}

C# Mapping

The base proxy class  defines the asynchronous flush operation as shown below:ObjectPrx

C#

namespace Ice {
    public class ObjectPrx : ... {
        // ...
        bool ice_flushBatchRequests_async(AMI_Object_ice_flushBatchRequests cb);
    }
}

The argument is a reference for an object that implements the following class:

C#

namespace Ice {
    public abstract class AMI_Object_ice_flushBatchRequests ... {
        public abstract void ice_exception(Ice.Exception ex);
    }
}

As an example, the class below demonstrates how to define a callback class that also receives a notification when the asynchronous flush completes:

C#

class MyFlushCallbackI : Ice.AMI_Object_ice_flushBatchRequests,
                         Ice.AMISentCallback
{
    public override void
    ice_exception(Ice.LocalException ex) { ... }

    public void ice_sent() { ... }
}



Ice 3.4.2 Documentation

6 Copyright © 2017, ZeroC, Inc.

Python Mapping

The base proxy class defines the asynchronous flush operation as shown below:

Python

def ice_flushBatchRequests_async(self, cb)

The  argument represents a callback object that must implement an  method. As an example, the class below demonstrates how cb ice_exception
to define a callback class that also receives a notification when the asynchronous flush completes:

Python

class MyFlushCallbackI(object):
    def ice_exception(self, ex):
        # handle an exception

    def ice_sent(self):
        # flush has completed

Handling Timeouts with Deprecated AMI Mapping
Timeouts for asynchronous invocations behave like those for synchronous invocations: an  is raised if the response is Ice::TimeoutException
not received within the given time period. In the case of an asynchronous invocation, however, the exception is reported to the  ice_exception
method of the invocation's callback object. For example, we can handle this exception in C++ as shown below:

C++

class AMI_Model_interpolateI : public Demo::AMI_Model_interpolate
{
public:
    // ...

    virtual void ice_exception(const Ice::Exception& ex)
    {
        try {
            ex.ice_throw();
        } catch (const Demo::RangeError& e) {
            cerr << "interpolate failed: range error" << endl;
        } catch (const Ice::TimeoutException&) {
            cerr << "interpolate failed: timeout" << endl;
        } catch (const Ice::LocalException& e) {
            cerr << "interpolate failed: " << e << endl;
        }
    }
};

Handling Errors with Deprecated AMI Mapping
It is important to remember that all errors encountered by an AMI invocation (except ) are reported back via CommunicatorDestroyedException
the  callback, even if the error condition is encountered "on the way out", when the operation is invoked. The reason for this is ice_exception
consistency: if an invocation, such as  could throw exceptions, you would have to handle exceptions in two places in your code: at the foo_async
point of call for exceptions that are encountered "on the way out", and in  for error conditions that are detected after the call is ice_exception
initiated.

Where this matters is if you want to send off a number of AMI calls, each of which depends on the preceding call to have succeeded. For example:



Ice 3.4.2 Documentation

7 Copyright © 2017, ZeroC, Inc.

C++

p1->foo_async(cb1);
p2->bar_async(cb2);

If  depends for its correct working on the successful completion of , this code will not work because the  invocation will be sent regardless bar foo bar
of whether  failed or not.foo

In such cases, where you need to be sure that one call is dispatched only if a preceding call succeeds, you must instead invoke  from within 's bar foo
 implementation, instead of from the main-line code.ice_response

AMI Limitations
AMI invocations cannot be sent using . If you attempt to invoke an AMI operation using a proxy that is configured to use collocated optimization
collocation optimization, the Ice run time will raise  if the servant happens to be collocated; the request is CollocationOptimizationException
sent normally if the servant is not collocated. This optimization is enabled by default (as specified by the  Ice.Default.CollocationOptimized
property) but can be disabled on individual proxies using a .proxy method

See Also

Location Transparency
The Ice Threading Model
Thread Pool Design Considerations
Deprecated AMI Language Mappings

https://doc.zeroc.com/display/Ice34/Location+Transparency
https://doc.zeroc.com/display/Ice34/Ice+Default+and+Override+Properties#IceDefaultandOverrideProperties-Ice.Default.CollocationOptimized
https://doc.zeroc.com/display/Ice34/Proxy+Methods
https://doc.zeroc.com/display/Ice34/Location+Transparency
https://doc.zeroc.com/display/Ice34/The+Ice+Threading+Model
https://doc.zeroc.com/display/Ice34/Thread+Pool+Design+Considerations
https://doc.zeroc.com/display/Ice34/Deprecated+AMI+Language+Mappings

	Advanced Topics for Deprecated AMI Mapping

