
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

1.
2.
3.

4.

5.

6.

Idempotency and Life Cycle Operations
You may be tempted to write the life cycle operations as follows:

Slice

interface PhoneEntry {
 // ...
 idempotent void destroy(); // Wrong!

};

interface PhoneEntryFactory {
 idempotent PhoneEntry* create(string name, string phNum)
 throws PhoneEntryExists;
};

The idea is that and can be because it is safe to let the Ice run time retry the operation in the event of a create destroy idempotent operations
temporary network failure. However, this assumption is not true. To see why, consider the following scenario:

A client invokes on a phone entry.destroy
The Ice run time sends the request to the server on the wire.
The connection goes down just after the request was sent, but before the reply for the request arrives in the client. It so happens that the
request was received by the server and acted upon, and the reply from the server back to the client is lost because the connection is still
down.
The Ice run time tries to read the reply for the request and realizes that the connection has gone down. Because the operation is marked
idempotent, the run time attempts an by re-establishing the connection and sending the request a second time, which automatic retry
happens to work.
The server receives the request to destroy the entry but, because the entry is destroyed already, the server returns an ObjectNotExistEx

 to the client, which the Ice run time passes to the application code.ception
The application receives an and falsely concludes that it tried to destroy a non-existent object when, in fact, ObjectNotExistException
the object did exist and was destroyed as intended.

A similar scenario can be constructed for : in that case, the application will receive a exception when, in fact, the entry create PhoneEntryExists
did not exist and was created successfully.

These scenarios illustrate that and are idempotent: sending one or invocation for a particular object is not create destroy never create destroy
the same as sending two invocations: the outcome depends on whether the first invocation succeeded or not, so and are not create destroy
idempotent.

See Also

Idempotent Operations
Automatic Retries

https://doc.zeroc.com/display/Ice34/Operations#Operations-IdempotentOperations
https://doc.zeroc.com/display/Ice34/Automatic+Retries
https://doc.zeroc.com/display/Ice34/Operations#Operations-IdempotentOperations
https://doc.zeroc.com/display/Ice34/Automatic+Retries

	Idempotency and Life Cycle Operations

