Ice 3.4.2 Documentation

Plug-in API

On this page:

The Plugin Interface
C++ Plug-in Factory
Java Plug-in Factory
C# Plug-in Factory

The Pl ugi n Interface

The plug-in facility defines a local Slice interface that all plug-ins must implement:

Slice

nodul e Ice {

local interface Plugin {
void initialize();
voi d destroy();

i

b

The lifecycle of an Ice plug-in is structured to accommodate dependencies between plug-ins, such as when a logger plug-in needs to use IceSSL for
its logging activities. Consequently, a plug-in object's lifecycle consists of four phases:

® Construction
The Ice run time uses a language-specific factory API for instantiating plug-ins. During construction, a plug-in can acquire resources but
must not spawn new threads or perform activities that depend on other plug-ins.

® |Initialization
After all plug-ins have been constructed, the Ice run time invokes i ni ti al i ze on each plug-in. The order in which plug-ins are initialized is
undefined by default but can be customized using a configuration property. If a plug-in has a dependency on another plug-in, you must
configure the Ice run time so that initialization occurs in the proper order. In this phase it is safe for a plug-in to spawn new threads; it is also
safe for a plug-in to interact with other plug-ins and use their services, as long as those plug-ins have already been initialized. If i ni ti al i ze
raises an exception, the Ice run time invokes dest r oy on all plug-ins that were successfully initialized (in the reverse order of initialization)
and raises the original exception to the application.

® Active
The active phase spans the time between initialization and destruction. Plug-ins must be designed to operate safely in the context of
multiple threads.

® Destruction
The Ice run time invokes dest r oy on each plug-in in the reverse order of initialization.

This lifecycle is repeated for each new communicator that an application creates and destroys.

C++ Plug-in Factory

In C++, the plug-in factory is an exported function with C linkage having the following signature:

C++

extern "C'

{

| CE_DECLSPEC_EXPORT | ce: : Pl ugi n*

functi onNane(const | ce:: Conmuni cat or Pt r & conmuni cat or,
const std::string& nane,
const lce::StringSeq& args);

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Local+Types
https://doc.zeroc.com/display/Ice34/Advanced+Plug-in+Topics

Ice 3.4.2 Documentation

You can define the function with any name you wish. We recommend that you use the | CE_DECLSPEC_EXPORT macro to ensure that the function is
exported correctly on all platforms. Since the function uses C linkage, it must return the plug-in object as a regular C++ pointer and not as an Ice
smart pointer. Furthermore, the function must not raise C++ exceptions; if an error occurs, the function must return zero.

The arguments to the function consist of the communicator that is in the process of being initialized, the name assigned to the plug-in, and any
arguments that were specified in the plug-in's configuration.

Java Plug-in Factory

In Java, a plug-in factory must implement the | ce. Pl ugi nFact or y interface:

Java

package Ice;

public interface PluginFactory {
Pl ugi n creat e(Conmuni cat or communi cator, String name, String[] args);

}

The arguments to the cr eat e method consist of the communicator that is in the process of being initialized, the name assigned to the plug-in, and
any arguments that were specified in the plug-in's configuration.

The cr eat e method can return nul | to indicate that a general error occurred, or it can raise Pl ugi nl ni ti al i zati onExcepti on to provide more
detailed information. If any other exception is raised, the Ice run time wraps it inside an instance of Pl ugi nl ni ti al i zati onExcepti on.

C# Plug-in Factory

In .NET, a plug-in factory must implement the | ce. Pl ugi nFact ory interface:

C#

nanespace |lce {
public interface PluginFactory

{
}

Pl ugi n creat e(Conmuni cat or conmuni cator, string name, string[] args);

The arguments to the cr eat e method consist of the communicator that is in the process of being initialized, the name assigned to the plug-in, and
any arguments that were specified in the plug-in's configuration.

The cr eat e method can return nul | to indicate that a general error occurred, or it can raise Pl ugi nl ni ti al i zat i onExcepti on to provide more
detailed information. If any other exception is raised, the Ice run time wraps it inside an instance of Pl ugi nl ni ti al i zati onExcepti on.

See Also

® Plug-in Configuration
® Advanced Plug-in Topics

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Plug-in+Configuration
https://doc.zeroc.com/display/Ice34/Plug-in+Configuration
https://doc.zeroc.com/display/Ice34/Plug-in+Configuration
https://doc.zeroc.com/display/Ice34/Plug-in+Configuration
https://doc.zeroc.com/display/Ice34/Advanced+Plug-in+Topics

	Plug-in API

