
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Obtaining Proxies
This page describes the ways an application can obtain a proxy.

On this page:

Obtaining a Proxy from a String
Obtaining a Proxy from Properties
Obtaining a Proxy using Factory Methods
Obtaining a Proxy by Invoking Operations

Obtaining a Proxy from a String
The communicator operation creates a proxy from its , as shown in the following C++ example:stringToProxy stringified representation

C++

Ice::ObjectPrx p = communicator->stringToProxy("ident:tcp -p 5000");

Obtaining a Proxy from Properties
Rather than hard-coding a stringified proxy as the previous example demonstrated, an application can gain more flexibility by externalizing the proxy
in a configuration property. For example, we can define a property that contains our stringified proxy as follows:

MyApp.Proxy=ident:tcp -p 5000

We can use the communicator operation to convert the property's value into a proxy, as shown below in Java:propertyToProxy

Java

Ice.ObjectPrx p = communicator.propertyToProxy("MyApp.Proxy");

As an added convenience, allows you to define subordinate properties that configure the proxy's local settings. The properties propertyToProxy
below demonstrate this feature:

MyApp.Proxy=ident:tcp -p 5000
MyApp.Proxy.PreferSecure=1
MyApp.Proxy.EndpointSelection=Ordered

These additional properties simplify the task of customizing a proxy (as you can with) without the need to change the application's proxy methods
code. The properties shown above are equivalent to the following statements:

Java

Ice.ObjectPrx p = communicator.stringToProxy("ident:tcp -p 5000");
p = p.ice_preferSecure(true);
p = p.ice_endpointSelection(Ice.EndpointSelectionType.Ordered);

The list of includes the most commonly-used proxy settings. The communicator prints a warning by default if it does not supported proxy properties
recognize a subordinate property. You can disable this warning using the property .Ice.Warn.UnknownProperties

Note that proxy properties can themselves have proxy properties. For example, the following sets the property on the default PreferSecure
locator's router:

https://doc.zeroc.com/display/Ice34/Communicators
https://doc.zeroc.com/display/Ice34/Proxy+and+Endpoint+Syntax
https://doc.zeroc.com/display/Ice34/Communicators
https://doc.zeroc.com/display/Ice34/Proxy+Methods
https://doc.zeroc.com/display/Ice34/Ice+Proxy+Properties
https://doc.zeroc.com/display/Ice34/Ice+Warning+Properties#IceWarningProperties-Ice.Warn.UnknownProperties

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

Ice.Default.Locator.Router.PreferSecure=1

Obtaining a Proxy using Factory Methods
Proxy factory methods allow you to modify aspects of an existing proxy. Since proxies are immutable, factory methods always return a new proxy if
the desired modification differs from the proxy's current configuration. Consider the following C# example:

C#

Ice.ObjectPrx p = communicator.stringToProxy("...");
p = p.ice_oneway();

ice_oneway is considered a factory method because it returns a proxy configured to use oneway invocations. If the original proxy uses a different
invocation mode, the return value of is a new proxy object.ice_oneway

The and methods can also be considered factory methods because they return new proxies that are narrowed to a checkedCast uncheckedCast
particular Slice interface. A call to or typically follows the use of other factory methods, as shown below:checkedCast uncheckedCast

C#

Ice.ObjectPrx p = communicator.stringToProxy("...");
Ice.LocatorPrx loc = Ice.LocatorPrxHelper.checkedCast(p.ice_secure(true));

Note however that, once a proxy has been narrowed to a Slice interface, it is not normally necessary to perform another down-cast after using a
factory method. For example, we can rewrite this example as follows:

C#

Ice.ObjectPrx p = communicator.stringToProxy("...");
Ice.LocatorPrx loc = Ice.LocatorPrxHelper.checkedCast(p);
loc = (Ice.LocatorPrx)p.ice_secure(true);

A language-specific cast may be necessary, as shown here for C#, because the factory methods are declared to return the type , but the ObjectPrx
proxy object itself retains its narrowed type. The only exceptions are the factory methods and . Calls to either of these ice_facet ice_identity
methods may produce a proxy for an object of an unrelated type, therefore they return a base proxy that you must subsequently down-cast to an
appropriate type.

Obtaining a Proxy by Invoking Operations
An application can also obtain a proxy as the result of an Ice invocation. Consider the following Slice definitions:

Slice

interface Account { ... };
interface Bank {
 Account* findAccount(string id);
};

Invoking the operation returns a proxy for an object. There is no need to use or on this findAccount Account checkedCast uncheckedCast
proxy because it has already been narrowed to the interface. The C++ code below demonstrates how to invoke :Account findAccount

https://doc.zeroc.com/display/Ice34/Proxy+Methods

Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

C++

BankPrx bank = ...
AccountPrx acct = bank->findAccount(id);

Of course, the application must have already obtained a proxy for the bank object using one of the techniques shown above.

See Also

Communicators
Proxy and Endpoint Syntax
Proxy Methods
Ice Proxy Properties
Ice Warning Properties

https://doc.zeroc.com/display/Ice34/Communicators
https://doc.zeroc.com/display/Ice34/Proxy+and+Endpoint+Syntax
https://doc.zeroc.com/display/Ice34/Proxy+Methods
https://doc.zeroc.com/display/Ice34/Ice+Proxy+Properties
https://doc.zeroc.com/display/Ice34/Ice+Warning+Properties

	Obtaining Proxies

