
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

1.
2.

Thread Pool Design Considerations
Improper configuration of a can have a serious impact on the performance of your application. This page discusses some issues that you thread pool
should consider when designing and configuring your applications.

On this page:

Single-Threaded Pool
Multi-Threaded Pool
Serializing Requests in a Multi-Threaded Pool

Single-Threaded Pool
There are several implications of using a thread pool with a maximum size of one thread:

Only one message can be dispatched at a time.

This can be convenient because it lets you avoid (or postpone) dealing with in your application. However, it also thread-safety issues
eliminates the possibility of dispatching requests concurrently, which can be a bottleneck for applications running on multi-CPU systems or
that perform blocking operations. Another option is to enable in a multi-threaded pool.serialization

Only one AMI reply can be processed at a time.

An application must increase the size of the client thread pool in order to process multiple AMI callbacks in parallel.

Nested twoway invocations are limited.

At most one level of is possible.nested twoway invocations

It is important to remember that a communicator's client and server thread pools have a default maximum size of one thread, therefore these
limitations also apply to any object adapter that shares the communicator's thread pools.

Multi-Threaded Pool
Configuring a thread pool to support multiple threads implies that the application is prepared for the Ice run time to dispatch operation invocations or
AMI callbacks concurrently. Although greater effort is required to design a thread-safe application, you are rewarded with the ability to improve the
application's scalability and throughput.

Choosing an appropriate maximum size for a thread pool requires careful analysis of your application. For example, in compute-bound applications it
is best to limit the number of threads to the number of physical processors in the host machine; adding any more threads only increases context
switches and reduces performance. Increasing the size of the pool beyond the number of processors can improve responsiveness when threads can
become blocked while waiting for the operating system to complete a task, such as a network or file operation. On the other hand, a thread pool
configured with too many threads can have the opposite effect and negatively impact performance. Testing your application in a realistic environment
is the recommended way of determining the optimum size for a thread pool.

If your application uses , it is very important that you evaluate whether it is possible for thread starvation to cause a deadlock. nested invocations
Increasing the size of a thread pool can lessen the chance of a deadlock, but other design solutions are usually preferred.

Serializing Requests in a Multi-Threaded Pool
When using a multi-threaded pool, the nondeterministic nature of thread scheduling means that requests from the same connection may not be
dispatched in the order they were received. Some applications cannot tolerate this behavior, such as a transaction processing server that must
guarantee that requests are executed in order. There are two ways of satisfying this requirement:

Use a single-threaded pool.
Configure a multi-threaded pool to serialize requests using its property.Serialize

At first glance these two options may seem equivalent, but there is a significant difference: a single-threaded pool can only dispatch one request at a
time and therefore serializes requests from connections, whereas a multi-threaded pool configured for serialization can dispatch requests from all
different connections concurrently while serializing requests from the same connection.

You can obtain the same behavior from a multi-threaded pool without enabling serialization, but only if you design the clients so that they do not send
requests from multiple threads, do not send requests over more than one connection, and only use synchronous twoway invocations. In general,
however, it is better to avoid such tight coupling between the implementations of the client and server.

https://doc.zeroc.com/display/Ice34/Thread+Pools
https://doc.zeroc.com/display/Ice34/Thread+Safety
https://doc.zeroc.com/display/Ice34/Nested+Invocations
https://doc.zeroc.com/display/Ice34/Nested+Invocations
https://doc.zeroc.com/display/Ice34/Thread+Pools#ThreadPools-ConfiguringThreadPools

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

Enabling serialization can improve responsiveness and performance compared to a single-threaded pool, but there is an associated cost. The extra
synchronization that the pool must perform to serialize requests adds significant overhead and results in higher latency and reduced throughput.

As you can see, thread pool serialization is not a feature that you should enable without analyzing whether the benefits are worthwhile. For example,
it might be an inappropriate choice for a server with long-running operations when the client needs the ability to have several operations in progress
simultaneously. If serialization was enabled in this situation, the client would be forced to work around it by to the server, opening several connections
which again tightly couples the client and server implementations. If the server must keep track of the order of client requests, a better solution would
be to use serialization in conjunction with to queue the incoming requests for execution by other threads.asynchronous dispatch

See Also

Thread Pools
Nested Invocations
Thread Safety
Connection Establishment

https://doc.zeroc.com/display/Ice34/Connection+Establishment
https://doc.zeroc.com/display/Ice34/Terminology#Terminology-AsynchronousMethodDispatch
https://doc.zeroc.com/display/Ice34/Thread+Pools
https://doc.zeroc.com/display/Ice34/Nested+Invocations
https://doc.zeroc.com/display/Ice34/Thread+Safety
https://doc.zeroc.com/display/Ice34/Connection+Establishment

	Thread Pool Design Considerations

