
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Batched Invocations
Oneway and invocations are normally sent as individual messages, that is, the Ice run time sends the oneway or datagram invocation to datagram
the server immediately, as soon as the client makes the call. If a client sends a number of oneway or datagram invocations in succession, the client-
side run time traps into the OS kernel for each message, which is expensive. In addition, each message is sent with its own , that is, message header
for messages, the bandwidth for message headers is consumed. In situations where a client sends a number of oneway or datagram N N
invocations, the additional overhead can be considerable.

To avoid the overhead of sending many small messages, you can send oneway and datagram invocations in a batch: instead of being sent as a
separate message, a batch invocation is placed into a client-side buffer by the Ice run time. Successive batch invocations are added to the buffer and
accumulated on the client side until they are flushed, either explicitly by the client or automatically by the Ice run time.

On this page:

Proxy Methods for Batched Invocations
Automatically Flushing Batched Invocations
Flushing Batched Invocations for Communicators and Connections
Considerations for Batched Datagrams
Compressing Batched Invocations
Active Connection Management and Batched Invocations

Proxy Methods for Batched Invocations
Several support the use of batched invocations. In Slice, these methods would look as follows:proxy methods

Slice

Object* ice_batchOneway();
Object* ice_batchDatagram();
void ice_flushBatchRequests();

The and methods create a new proxy configured for batch invocations. Once you obtain a batch proxy, ice_batchOneway ice_batchDatagram
messages sent via that proxy are buffered in the client-side run time instead of being sent immediately. Once the client has invoked one or more
operations on a batch proxy, it can call to explicitly flush the batched invocations. This causes the batched messages ice_flushBatchRequests
to be sent "in bulk", preceded by a single message header. On the server side, batched messages are dispatched by a single thread, in the order in
which they were written into the batch. This means that messages from a single batch cannot appear to be reordered in the server. Moreover, either
all messages in a batch are delivered or none of them. (This is true even for batched datagrams.)

Asynchronous versions of are also available; see the relevant language mapping for more information.ice_flushBatchRequests

Automatically Flushing Batched Invocations
The default behavior of the Ice run time, as governed by the configuration property , automatically flushes batched Ice.BatchAutoFlush
invocations as soon as a batched request causes the accumulated message to exceed the maximum allowable size. When this occurs, the Ice run
time immediately flushes the existing batch of requests and begins a new batch with this latest request as its first element.

For batched oneway invocations, the maximum message size is established by the property , which defaults to 1MB. In the Ice.MessageSizeMax
case of batched datagram invocations, the maximum message size is the smaller of the system's maximum size for datagram packets and the value
of .Ice.MessageSizeMax

A client that sends batch requests cannot determine the size of the message that the Ice run time is accumulating for it; automatic flushing is enabled
by default as a convenience for clients that unknowingly exceed the maximum message size. A client that requires more deterministic behavior
should flush batched requests explicitly at regular intervals.

Flushing Batched Invocations for Communicators and Connections
The and interfaces support synchronous and asynchronous versions of . As you might expect, Communicator Connection flushBatchRequests
the operation flushes all batch requests queued for a particular connection, and the Connection::flushBatchRequests Communicator::

 operation flushes the batch requests of every connection created by a communicator.flushBatchRequests

The synchronous versions of block the calling thread until the batch requests have been successfully written to the local flushBatchRequests
transport. To avoid the risk of blocking, you must use the asynchronous versions instead (assuming they are supported by your chosen language
mapping). Note also that the asynchronous version of never raises an exception, even if an error occurs Communicator::flushBatchRequests
while flushing one of its connections.

https://doc.zeroc.com/display/Ice34/Oneway+Invocations
https://doc.zeroc.com/display/Ice34/Datagram+Invocations
https://doc.zeroc.com/display/Ice34/The+Ice+Protocol
https://doc.zeroc.com/display/Ice34/Proxy+Methods
https://doc.zeroc.com/display/Ice34/Ice+Miscellaneous+Properties#IceMiscellaneousProperties-Ice.BatchAutoFlush
https://doc.zeroc.com/display/Ice34/Ice+Miscellaneous+Properties#IceMiscellaneousProperties-Ice.MessageSizeMax
https://doc.zeroc.com/display/Ice34/Communicators
https://doc.zeroc.com/display/Ice34/Using+Connections

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

Considerations for Batched Datagrams
For batched datagram invocations, you need to keep in mind that, if the data for the invocations in a batch substantially exceeds the PDU size of the
network, it becomes increasingly likely for an individual UDP packet to get lost due to fragmentation. In turn, loss of even a single packet causes the
entire batch to be lost. For this reason, batched datagram invocations are most suitable for simple interfaces with a number of operations that each
set an attribute of the target object (or interfaces with similar semantics). Batched oneway invocations do not suffer from this risk because they are
sent over stream-oriented transports, so individual packets cannot be lost.

Compressing Batched Invocations
Batched invocations are more efficient if you also enable for the transport: many isolated and small messages are unlikely to compress compression
well, whereas batched messages are likely to provide better compression because the compression algorithm has more data to work with.

Active Connection Management and Batched Invocations
As for , you should disable server-side (ACM) when using batched invocations over TCP/IP or oneway invocations Active Connection Management
SSL. With server-side ACM enabled, it is possible for a server to close the connection at the wrong moment and not process a batch (with no
indication being returned to the client that the batch was lost).

See Also

Oneway Invocations
Datagram Invocations
Communicators
Using Connections
The Ice Protocol
Protocol Compression
Active Connection Management

Regardless of whether you used batched messages or not, you should enable compression only on lower-speed links. For high-speed
LAN connections, the CPU time spent doing the compression and decompression is typically longer than the time it takes to just transmit
the uncompressed data.

https://doc.zeroc.com/display/Ice34/Protocol+Compression
https://doc.zeroc.com/display/Ice34/Oneway+Invocations
https://doc.zeroc.com/display/Ice34/Active+Connection+Management
https://doc.zeroc.com/display/Ice34/Oneway+Invocations
https://doc.zeroc.com/display/Ice34/Datagram+Invocations
https://doc.zeroc.com/display/Ice34/Communicators
https://doc.zeroc.com/display/Ice34/Using+Connections
https://doc.zeroc.com/display/Ice34/The+Ice+Protocol
https://doc.zeroc.com/display/Ice34/Protocol+Compression
https://doc.zeroc.com/display/Ice34/Active+Connection+Management

	Batched Invocations

