
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Servant Evictors
A particularly interesting use of a is as an . An evictor is a servant locator that maintains a cache of servants:servant locator evictor [1]

Whenever a request arrives (that is, is called by the Ice run time), the evictor checks to see whether it can find a servant for the locate
request in its cache. If so, it returns the servant that is already instantiated in the cache; otherwise, it instantiates a servant and adds it to the
cache.
The cache is a queue that is maintained in least-recently used (LRU) order: the least-recently used servant is at the tail of the queue, and
the most-recently used servant is at the head of the queue. Whenever a servant is returned from or added to the cache, it is moved from its
current queue position to the head of the queue, that is, the "newest" servant is always at the head, and the "oldest" servant is always at the
tail.
The queue has a configurable length that corresponds to how many servants will be held in the cache; if a request arrives for an Ice object
that does not have a servant in memory and the cache is full, the evictor removes the least-recently used servant at the tail of the queue
from the cache in order to make room for the servant about to be instantiated at the head of the queue.

The figure below illustrates an evictor with a cache size of five after five invocations have been made, for object identities 1 to 5, in that order.

An evictor after five invocations for object identities 1 to 5.

At this point, the evictor has instantiated five servants, and has placed each servant onto the evictor queue. Because requests were sent by the client
for object identities 1 to 5 (in that order), servant 5 ends up at the head of the queue (at the most-recently used position), and servant 1 ends up at
the tail of the queue (at the least-recently used position).

Assume that the client now sends a request for servant 3. In this case, the servant is found on the evictor queue and moved to the head position. The
resulting ordering is shown below:

The evictor after accessing servant 3.

Assume that the next client request is for object identity 6. The evictor queue is fully populated, so the evictor creates a servant for object identity 6,
places that servant at the head of the queue, and evicts the servant with identity 1 (the least-recently used servant) at the tail of the queue, as you
can see here:

https://doc.zeroc.com/display/Ice34/Servant+Locators

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

1.

The evictor after evicting servant 1.

The evictor pattern combines the advantages of the ASM with the advantages of a : provided that the cache size is sufficient to hold default servant
the working set of servants in memory, most requests are served by an already instantiated servant, without incurring the overhead of creating a
servant and accessing the database to initialize servant state. By setting the cache size, you can control the trade-off between performance and
memory consumption as appropriate for your application.

The following pages show how to implement an evictor in several languages. (You can also find the source code for the evictor with the code
examples for this manual in the Ice distribution.)

Topics

Implementing a Servant Evictor in C++
Implementing a Servant Evictor in Java
Implementing a Servant Evictor in C-Sharp

See Also

Servant Locators
Default Servants

References

Henning, M., and S. Vinoski. 1999. . Reading, MA: Addison-Wesley.Advanced CORBA Programming with C++

https://doc.zeroc.com/display/Ice34/Default+Servants
https://doc.zeroc.com/pages/viewpage.action?pageId=5048106
https://doc.zeroc.com/display/Ice34/Implementing+a+Servant+Evictor+in+Java
https://doc.zeroc.com/display/Ice34/Implementing+a+Servant+Evictor+in+C-Sharp
https://doc.zeroc.com/display/Ice34/Servant+Locators
https://doc.zeroc.com/display/Ice34/Default+Servants
http://amzn.com/0201379279

	Servant Evictors

