
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Guidelines for Distributing Ice Applications
This page provides some guidance for developers that are planning to distribute an Ice-based application. We can start by listing items that typically
should not be included in your binary distribution:

Slice compilers
Slice files (unless you are using a scripting language, as discussed below)
Executables and libraries for Ice services and tools that your application does not use
For C++ programs on Windows:

DLLs built in debug mode (such as)ice34d.dll
Program database () filesPDB
Header files
Import library () filesLIB

Each of the language mappings is discussed in its own subsection below. In the following discussion, we use the term to refer to a shared library
library or DLL as appropriate for the platform.

On this page:

C++ Distribution
Discovering Dependencies
Qt Libraries

.NET Distribution
Java Distribution
Python and Ruby Distributions
PHP Distribution

C++ Distribution
The library contains the implementation of the core Ice run time. Supplemental libraries provide the stubs and skeletons for the Ice services, as Ice
well as utility functions used by Ice, its services, and Ice applications:

Glacier2
IceBox
IceGrid
IcePatch2
IceSSL
IceStorm

The library is a dependency of the library and therefore must be distributed with any Ice application. The library is required by IceUtil Ice IceXML
certain Ice services.

Your distribution needs to include only those libraries that your application uses. If your application implements an IceBox service, you must also
distribute the IceBox server executable ().icebox

Discovering Dependencies

On Windows, you can use the utility in a command window to display the dependencies of a DLL or executable. For example, here is the dumpbin
output for the executable:glacier2router

> dumpbin /dependents glacier2router.exe
ice34.dll
iceutil34.dll
LIBEAY32.dll
glacier234.dll
icessl34.dll
MSVCP90.dll
MSVCR90.dll
KERNEL32.dll

We can deduce from the names of the Microsoft Visual C++ run time DLLs that this Ice installation was compiled with Visual Studio 2008. Note that
each of these DLLs has its own dependencies, which can be inspected using additional commands. However, tracking down the dumpbin
dependencies recursively through each DLL can quickly become tedious, therefore you should consider using the graphical Dependency Walker
utility instead.

On Unix, the utility displays the dependencies of shared libraries and executables.ldd

http://www.dependencywalker.com

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

Qt Libraries

The IceGrid and IceStorm services use a pluggable architecture for their persistent storage needs. These services use Freeze as their default
persistent store, but it is also possible to use SQL databases instead. To implement the SQL persistence solution, Ice uses libraries from the Qt

. Ice has no other dependency on the Qt libraries, therefore you only need to include the Qt libraries in your own distribution if you use framework IceG
 or with a SQL database. In this case, you would need to bundle the following libraries:rid IceStorm

IceGridSqlDB (for IceGrid)
IceStormSqlDB (for IceStorm)
QtCore and QtSql

.NET Distribution
The assembly contains the implementation of the core Ice run time. Supplemental assemblies provide the stubs and skeletons for the Ice Ice
services:

Glacier2
IceBox
IceGrid
IcePatch2
IceSSL
IceStorm

Your distribution needs to include only those assemblies that your application uses. If your application implements an IceBox service, you must also
distribute the IceBox server executable ().iceboxnet.exe

On Mono, the file provides a mapping for the Bzip2 DLL. If your application does not use Ice's protocol compression feature, you Ice.dll.config
do not need to distribute this file. Otherwise, you should include the file and verify that its mapping is appropriate for your target platform.

Java Distribution
The Ice for Java run time () contains the following components:Ice.jar

implementations of Ice, IceSSL, and the IceBox server
stubs and skeletons for all of the Ice services

If your application uses Freeze, you must also distribute along with the Berkeley DB run time libraries and JAR file.Freeze.jar

For assistance with packaging your Java application, consider using a utility such as .ProGuard

Python and Ruby Distributions
The Ice run time for a Python or Ruby application consists of the following components:

the library for the scripting language extension: or IcePy IceRuby
the libraries required by the extension: , , and Ice IceUtil Slice
the source code generated from the Slice files in the Ice distribution

In addition, your distribution should include the source code generated for your own Slice files, or the Slice files themselves if your application loads
them dynamically.

PHP Distribution
The Ice run time for a PHP application consists of the following components:

the library for the scripting language extension: or IcePHP php_ice
the libraries required by the extension: , , and Ice IceUtil Slice
the source code generated from the Slice files in the Ice distribution

In addition, your distribution should include the source code generated for your own Slice files.

See Also

IceGrid Persistent Data
Configuring IceStorm

http://qt.nokia.com
http://qt.nokia.com
https://doc.zeroc.com/display/Ice34/IceGrid+Persistent+Data#IceGridPersistentData-UsingIceGridandSQL
https://doc.zeroc.com/display/Ice34/IceGrid+Persistent+Data#IceGridPersistentData-UsingIceGridandSQL
https://doc.zeroc.com/display/Ice34/Configuring+IceStorm#ConfiguringIceStorm-IceStormDatabaseConfiguration
http://proguard.sourceforge.net
https://doc.zeroc.com/display/Ice34/IceGrid+Persistent+Data
https://doc.zeroc.com/display/Ice34/Configuring+IceStorm

	Guidelines for Distributing Ice Applications

