
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

The Server-Side main Method in Java
On this page:

A Basic main Method in Java
The Ice.Application Class in Java

Using Ice.Application on the Client Side in Java
Catching Signals in Java
Ice.Application and Properties in Java
Limitations of Ice.Application in Java

A Basic Method in Javamain
The main entry point to the Ice run time is represented by the local Slice interface . As for the client side, you must initialize the Ice::Communicator
Ice run time by calling before you can do anything else in your server. returns a reference to an Ice.Util.initialize Ice.Util.initialize
instance of an :Ice.Communicator

Java

public class Server {
 public static void
 main(String[] args)
 {
 int status = 0;
 Ice.Communicator ic = null;
 try {
 ic = Ice.Util.initialize(args);
 // ...
 } catch (Exception e) {
 e.printStackTrace();
 status = 1;
 }
 // ...
 }
}

Ice.Util.initialize accepts the argument vector that is passed to by the operating system. The function scans the argument vector for main
any that are relevant to the Ice run time, but does not remove those options. If anything goes wrong during initialization, command-line options initi

 throws an exception.alize

Before leaving your function, you call . The operation is responsible for finalizing the Ice run time. In main must Communicator.destroy destroy
particular, waits for any operation implementations that are still executing in the server to complete. In addition, ensures that any destroy destroy
outstanding threads are joined with and reclaims a number of operating system resources, such as file descriptors and memory. Never allow your main
function to terminate without calling first; doing so has undefined behavior.destroy

The general shape of our server-side function is therefore as follows:main

The semantics of Java arrays prevents from modifying the size of the argument vector. However, Ice.Util.initialize another
 of is provided that allows the application to obtain a new argument vector with the Ice options overloading Ice.Util.initialize

removed.

https://doc.zeroc.com/display/Ice34/Setting+Properties+on+the+Command+Line
https://doc.zeroc.com/display/Ice34/Command-Line+Parsing+and+Initialization
https://doc.zeroc.com/display/Ice34/Command-Line+Parsing+and+Initialization

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

Java

public class Server {
 public static void
 main(String[] args)
 {
 int status = 0;
 Ice.Communicator ic = null;
 try {
 ic = Ice.Util.initialize(args);
 // ...
 } catch (Exception e) {
 e.printStackTrace();
 status = 1;
 }
 if (ic != null) {
 try {
 ic.destroy();
 } catch (Exception e) {
 e.printStackTrace();
 status = 1;
 }
 }
 System.exit(status);
 }
}

Note that the code places the call to into a block and takes care to return the correct exit status to the operating Ice.Util.initialize try
system. Also note that an attempt to destroy the communicator is made only if the initialization succeeded.

The Class in JavaIce.Application
The preceding structure for the function is so common that Ice offers a class, , that encapsulates all the correct initialization main Ice.Application
and finalization activities. The synopsis of the class is as follows (with some detail omitted for now):

Java

package Ice;

public enum SignalPolicy { HandleSignals, NoSignalHandling }

public abstract class Application {
 public Application()

 public Application(SignalPolicy signalPolicy)

 public final int main(String appName, String[] args)

 public final int main(String appName, String[] args, String configFile)

 public final int main(String appName, String[] args, InitializationData initData)

 public abstract int run(String[] args)

 public static String appName()

 public static Communicator communicator()

 // ...
}

Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

1.

2.

3.

4.

5.
6.

The intent of this class is that you specialize and implement the abstract method in your derived class. Whatever code you Ice.Application run
would normally place in goes into the method instead. Using , our program looks as follows:main run Ice.Application

Java

public class Server extends Ice.Application {
 public int
 run(String[] args)
 {
 // Server code here...

 return 0;
 }

 public static void
 main(String[] args)
 {
 Server app = new Server();
 int status = app.main("Server", args);
 System.exit(status);
 }
}

Note that is overloaded: you can pass an optional file name or an structure.Application.main InitializationData

If you pass a to , the property settings in this file are overridden by settings in a file identified by the configuration file name main ICE_CONFIG
environment variable (if defined). Property settings supplied on the take precedence over all other settings.command line

The function does the following:Application.main

It installs an exception handler for . If your code fails to handle an exception, prints the name java.lang.Exception Application.main
of an exception and a stack trace on before returning with a non-zero return value.System.err
It initializes (by calling) and finalizes (by calling) a communicator. You can get access Ice.Util.initialize Communicator.destroy
to the communicator for your server by calling the static accessor.communicator
It scans the argument vector for options that are relevant to the Ice run time and removes any such options. The argument vector that is
passed to your method therefore is free of Ice-related options and only contains options and arguments that are specific to your run
application.
It provides the name of your application via the static member function. The return value from this call is the first argument in the appName
call to , so you can get at this name from anywhere in your code by calling (which is Application.main Ice.Application.appName
usually required for error messages). In the example above, the return value from would be .appName Server
It installs a shutdown hook that properly shuts down the communicator.
It installs a if the application has not already configured one. The per-process logger uses the value of the per-process logger Ice.

 property as a prefix for its messages and sends its output to the standard error channel. An application can also specify an ProgramName alt
.ernate logger

Using ensures that your program properly finalizes the Ice run time, whether your server terminates normally or in response to Ice.Application
an exception. We recommend that all your programs use this class; doing so makes your life easier. In addition, also provides Ice.Application
features for signal handling and configuration that you do not have to implement yourself when you use this class.

Using on the Client Side in JavaIce.Application

You can use for your clients as well: simply implement a class that derives from and place the client code Ice.Application Ice.Application
into its method. The advantage of this approach is the same as for the server side: ensures that the communicator is run Ice.Application
destroyed correctly even in the presence of exceptions.

Catching Signals in Java

The simple server we developed in had no way to shut down cleanly: we simply interrupted the server from the command line Hello World Application
to force it to exit. Terminating a server in this fashion is unacceptable for many real-life server applications: typically, the server has to perform some
cleanup work before terminating, such as flushing database buffers or closing network connections. This is particularly important on receipt of a
signal or keyboard interrupt to prevent possible corruption of database files or other persistent data.

Java does not provide direct support for signals, but it does allow an application to register a that is invoked when the JVM is shutting shutdown hook
down. There are several events that trigger JVM shutdown, such as a call to or an interrupt signal from the operating system, but the System.exit
shutdown hook is not provided with the reason for the shut down.

https://doc.zeroc.com/display/Ice34/Communicator+Initialization
https://doc.zeroc.com/display/Ice34/Using+Configuration+Files
https://doc.zeroc.com/display/Ice34/Using+Configuration+Files#UsingConfigurationFiles-ICE_CONFIG
https://doc.zeroc.com/display/Ice34/Setting+Properties+on+the+Command+Line
https://doc.zeroc.com/display/Ice34/The+Per-Process+Logger
https://doc.zeroc.com/display/Ice34/Command-Line+Parsing+and+Initialization#CommandLineParsingandInitialization-Ice.ProgramName
https://doc.zeroc.com/display/Ice34/Command-Line+Parsing+and+Initialization#CommandLineParsingandInitialization-Ice.ProgramName
https://doc.zeroc.com/display/Ice34/Logger+Facility
https://doc.zeroc.com/display/Ice34/Logger+Facility
https://doc.zeroc.com/display/Ice34/Hello+World+Application

Ice 3.4.2 Documentation

4 Copyright © 2017, ZeroC, Inc.

Ice.Application registers a shutdown hook by default, allowing you to cleanly terminate your application prior to JVM shutdown.

Java

package Ice;

public abstract class Application {
 // ...

 synchronized public static void destroyOnInterrupt()
 synchronized public static void shutdownOnInterrupt()
 synchronized public static void setInterruptHook(Thread t)
 synchronized public static void defaultInterrupt()
 synchronized public static boolean interrupted()
}

The functions behave as follows:

destroyOnInterrupt
This function installs a shutdown hook that calls on the communicator. This is the default behavior.destroy

shutdownOnInterrupt
This function installs a shutdown hook that calls on the communicator.shutdown

setInterruptHook
This function installs a custom shutdown hook that takes responsibility for performing whatever action is necessary to terminate the
application. Refer to the Java documentation for for more information on the semantics of shutdown hooks.Runtime.addShutdownHook

defaultInterrupt
This function removes the shutdown hook.

interrupted
This function returns true if the shutdown hook caused the communicator to shut down, false otherwise. This allows us to distinguish
intentional shutdown from a forced shutdown that was caused by the JVM. This is useful, for example, for logging purposes.

By default, behaves as if was invoked, therefore our server function requires no change to ensure Ice.Application destroyOnInterrupt main
that the program terminates cleanly on JVM shutdown. (You can disable this default shutdown hook by passing the enumerator NoSignalHandling
to the constructor. In that case, shutdown is not intercepted and terminates the VM.) However, we add a diagnostic to report the occurrence, so our m

 function now looks like:ain

Java

public class Server extends Ice.Application {
 public int
 run(String[] args)
 {
 // Server code here...

 if (interrupted())
 System.err.println(appName() + ": terminating");

 return 0;
 }

 public static void
 main(String[] args)
 {
 Server app = new Server();
 int status = app.main("Server", args);
 System.exit(status);
 }
}

During the course of normal execution, the JVM does not terminate until all non-daemon threads have completed. If an interrupt occurs, the JVM
ignores the status of active threads and terminates as soon as it has finished invoking all of the installed shutdown hooks.

Ice 3.4.2 Documentation

5 Copyright © 2017, ZeroC, Inc.

In a subclass of , the default shutdown hook (as installed by) blocks until the application's main thread Ice.Application destroyOnInterrupt
completes. As a result, an interrupted application may not terminate successfully if the main thread is blocked. For example, this can occur in an
interactive application when the main thread is waiting for console input. To remedy this situation, the application can install an alternate shutdown
hook that does not wait for the main thread to finish:

Java

public class Server extends Ice.Application {
 class ShutdownHook extends Thread {
 public void
 run()
 {
 try
 {
 communicator().destroy();
 }
 catch(Ice.LocalException ex)
 {
 ex.printStackTrace();
 }
 }
 }

 public int
 run(String[] args)
 {
 setInterruptHook(new ShutdownHook());

 // ...
 }
}

After replacing the default shutdown hook using , the JVM will terminate as soon as the communicator is destroyed.setInterruptHook

Ice.Application and Properties in Java

Apart from the functionality shown in this section, also takes care of initializing the Ice run time with property values. Ice.Application Properties
allow you to configure the run time in various ways. For example, you can use properties to control things such as the thread pool size or port number
for a server. The function of is overloaded; the second version allows you to specify the name of a configuration file that main Ice.Application
will be processed during initialization.

Limitations of in JavaIce.Application

Ice.Application is a singleton class that creates a single communicator. If you are using multiple communicators, you cannot use Ice.
. Instead, you must structure your code as we saw in (taking care to always destroy the communicator).Application Hello World Application

See Also

Hello World Application
Properties and Configuration
Communicator Initialization
Logger Facility

https://doc.zeroc.com/display/Ice34/Properties+and+Configuration
https://doc.zeroc.com/display/Ice34/Hello+World+Application
https://doc.zeroc.com/display/Ice34/Hello+World+Application
https://doc.zeroc.com/display/Ice34/Properties+and+Configuration
https://doc.zeroc.com/display/Ice34/Communicator+Initialization
https://doc.zeroc.com/display/Ice34/Logger+Facility

	The Server-Side main Method in Java

