Ice 3.4.2 Documentation

C-Sharp Mapping for Classes

On this page:

Basic C# Mapping for Classes
Operations Interfaces in C#
Inheritance from Ice.Object in C#
Class Data Members in C#
Class Operations in C#

Class Factories in C#

Class Constructors in C#

Basic C# Mapping for Classes

A Slice class is mapped to a C# class with the same name. By default, the generated class contains a public data member for each Slice data
member (just as for structures and exceptions), and a member function for each operation. Alternatively, you can use the property mapping by
specifying the " cl r: property" metadata directive, which generates classes with virtual properties instead of data members.

Consider the following class definition:

Slice

class Ti meOf Day {

short hour; /1 0 - 23
short minute; // 0 - 59
short second; /l 0 - 59
string format(); /1 Return tinme as hh:nmss

}

The Slice compiler generates the following code for this definition:

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice34/Classes
https://doc.zeroc.com/display/Ice34/C-Sharp+Mapping+for+Structures#CSharpMappingforStructures-Property

Ice 3.4.2 Documentation

C#

public interface Ti meOf DayOperations_

{

string format(lce.Current __current);
}
public interface Ti meCf DayOperati onsNC_
{

string format();
}

public abstract partial class TineCO Day
I ce. Ooj ect | npl
Ti neCf DayQper ati ons_,
Ti meCf DayQper at i onsNC_

{
public short hour;
public short mnute;
public short second;
public Ti meCO Day()
{
}
public Ti meOf Day(short hour, short minute, short second)
{
t his. hour = hour;
this.mnute = ninute;
t hi s. second = second;
}
public string fornmat()
{
return format (new I ce.Current());
}
public abstract string format(lce.Current __current);
}

There are a number of things to note about the generated code:

1. The compiler generates "operations interfaces" called Ti neOf DayQOper at i ons_ and Ti meOf DayOper at i onsNC_. These interfaces
contain a method for each Slice operation of the class.

2. The generated class Ti meOf Day inherits (indirectly) from | ce. Obj ect . This means that all classes implicitly inherit from | ce. Cbj ect ,
which is the ultimate ancestor of all classes. Note that | ce. Obj ect is not the same as | ce. Obj ect Pr x. In other words, you cannot pass a
class where a proxy is expected and vice versa.

If a class has only data members, but no operations, the compiler generates a non-abstract class.

3. The generated class contains a public member for each Slice data member.

4. The generated class inherits member functions for each Slice operation from the operations interfaces.

5. The generated class contains two constructors.

There is quite a bit to discuss here, so we will look at each item in turn.

Operations Interfaces in C#

The methods in the <i nt er f ace- nanme>Qper at i ons_ interface have an additional trailing parameter of type | ce. Cur r ent , whereas the methods
in the <i nt er f ace- nane>COper at i onsNC_ interface lack this additional trailing parameter. The methods without the Cur r ent parameter simply
forward to the methods with a Cur r ent parameter, supplying a default Cur r ent . For now, you can ignore this parameter and pretend it does not
exist.

If a class has only data members, but no operations, the compiler omits generating the <i nt er f ace- nane>Qper ati ons_ and <i nt er f ace-
name>Qper at i onsNC_ interfaces.

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice34/The+Current+Object

Ice 3.4.2 Documentation

Inheritance from | ce. Qbj ect in C#

Like interfaces, classes implicitly inherit from a common base class, | ce. Obj ect . However, as shown in the illustration below, classes inherit from |
ce. Obj ect instead of | ce. Obj ect Pr x (which is at the base of the inheritance hierarchy for proxies). As a result, you cannot pass a class where a
proxy is expected (and vice versa) because the base types for classes and proxies are not compatible.

loe, OhjeclPrx [oe, Ohlaot

Froxies... Classes...

Inheritance from | ce. Cbj ect Prx and | ce. bj ect .

I ce. Obj ect contains a number of member functions:

C#

nanespace |ce

{

public interface bject : System|d oneabl e

{
bool ice_isA(string s);
bool ice_isA(string s, Current current);

voi d ice_ping();
void ice_ping(Current current);

string[] ice_ids();
string[] ice_ids(Current current);

string ice_id();
string ice_id(Current current);

void ice_preMarshal ();
voi d i ce_post Unmar shal () ;

Di spat chSt at us i ce_di spatch(Request request, DispatchlnterceptorAsyncCallback cb);

The member functions of | ce. Cbj ect behave as follows:

® jce_isA
This function returns t r ue if the object supports the given type ID, and f al se otherwise.

® jce_ping
As for interfaces, i ce_pi ng provides a basic reachability test for the class.

® jce_ids
This function returns a string sequence representing all of the type IDs supported by this object, including : : | ce: : Obj ect .

® jce_id
This function returns the actual run-time type ID for a class. If you call i ce_i d through a reference to a base instance, the returned type id
is the actual (possibly more derived) type ID of the instance.

® jce_preMarshal
The Ice run time invokes this function prior to marshaling the object's state, providing the opportunity for a subclass to validate its declared
data members.

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice34/Type+IDs
https://doc.zeroc.com/display/Ice34/Type+IDs
https://doc.zeroc.com/display/Ice34/Type+IDs

Ice 3.4.2 Documentation

® jce_post Unmar shal
The Ice run time invokes this function after unmarshaling an object's state. A subclass typically overrides this function when it needs to
perform additional initialization using the values of its declared data members.

® jce_dispatch
This function dispatches an incoming request to a servant. It is used in the implementation of dispatch interceptors.

Note that the generated class does not override Get HashCode and Equal s. This means that classes are compared using shallow reference
equality, not value equality (as is used for structures).

The class also provides a C one method (whose implementation is inherited from | ce. Obj ect | npl ); the O one method returns a shallow
memberwise copy.

Class Data Members in C#

By default, data members of classes are mapped exactly as for structures and exceptions: for each data member in the Slice definition, the
generated class contains a corresponding public data member.

If you wish to restrict access to a data member, you can modify its visibility using the pr ot ect ed metadata directive. The presence of this directive
causes the Slice compiler to generate the data member with protected visibility. As a result, the member can be accessed only by the class itself or
by one of its subclasses. For example, the Ti meCf Day class shown below has the pr ot ect ed metadata directive applied to each of its data
members:

Slice

class Ti meOf Day {
["protected"] short hour; /1 0 - 23
["protected"] short minute; // O - 59
["protected"] short second; // 0 - 59
string format(); /1 Return time as hh:nmss

}s

The Slice compiler produces the following generated code for this definition:

C#

public abstract partial class TimeCf Day
I ce. Ovj ect | npl,
Ti neCf DayQper ati ons_,
Ti meX DayQOper ati onsNC_

protected short hour;
protected short minute;
protected short second;

public TimeO Day()

{
}

public TimeOf Day(short hour, short minute, short second)
{

t his. hour = hour;

this.mnute = minute;

this.second = second;

For a class in which all of the data members are protected, the metadata directive can be applied to the class itself rather than to each member
individually. For example, we can rewrite the Ti neCf Day class as follows:

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice34/Dispatch+Interceptors

Ice 3.4.2 Documentation

Slice

["protected"] class TineO Day {

short hour; // 0 - 23
short m nute; // 0 - 59
short second; /1 0 - 59
string format(); /1 Return tinme as hh:nmss

3

If a protected data member also has the cl r: pr oper t y directive, the generated property has protected visibility. Consider the Ti meCf Day class
once again:

Slice

["protected", "clr:property"] class Ti meOf Day {

short hour; // 0 - 23
short mnute; /1 0 - 59
short second; // 0 - 59
string format(); /1 Return time as hh:nmss

3

The effects of combining these two metadata directives are shown in the generated code below:

C#

public abstract partial class TineCf Day
I ce. oj ect I npl,
Ti meOf DayQper ati ons_,
Ti neCOf DayQper at i onsNC_

{
private short hour_prop;
protected short hour {
get {
return hour _prop;
}
set {
hour _prop = val ue;
}
}
/1
}

Refer to the structure mapping for more information on the property mapping for data members.

Class Operations in C#

Operations of classes are mapped to abstract member functions in the generated class. This means that, if a class contains operations (such as the f
or mat operation of our Ti meOf Day class), you must provide an implementation of the operation in a class that is derived from the generated class.
For example:

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice34/C-Sharp+Mapping+for+Structures#CSharpMappingforStructures-Property

Ice 3.4.2 Documentation

C#

public class TinmeO Dayl : TimeOf Day

{
public string format(lce.Current current)
{
return hour. ToString("D2") + ":"
+ mnute. ToString("D2") + ":"
+ second. ToString("D2");
}
}

Class Factories in C#

Having created a class such as Ti neCf Day| , we have an implementation and we can instantiate the Ti meCf Day| class, but we cannot receive it as

the return value or as an out-parameter from an operation invocation. To see why, consider the following simple interface:

Slice

interface Tinme {
Ti meCf Day get () ;
I

When a client invokes the get operation, the Ice run time must instantiate and return an instance of the Ti neCf Day class. However, Ti meCf Day is

an abstract class that cannot be instantiated. Unless we tell it, the Ice run time cannot magically know that we have created a Ti neCf Day| class that

implements the abstract f or mat operation of the Ti meCf Day abstract class. In other words, we must provide the Ice run time with a factory that
knows that the Ti meCf Day abstract class has a Ti meCf Day| concrete implementation. The | ce: : Cormuni cat or interface provides us with the

necessary operations:

Slice

nmodul e Ice {
local interface bjectFactory {
bj ect create(string type);
voi d destroy();
b

local interface Communicator {

voi d addOnj ect Fact ory(Cbj ect Factory factory, string id);

oj ect Factory findObjectFactory(string id);
/1
}
I

To supply the Ice run time with a factory for our Ti neCf Dayl class, we must implement the Obj ect Fact or y interface:

Copyright © 2017, ZeroC, Inc.



Ice 3.4.2 Documentation

C#
class ObjectFactory : |ce. (bjectFactory
{
public Ice. Object create(string type)
{
if (type.Equal s(MTineCOfDay.ice_staticld()))
return new Ti meCf Dayl () ;
Syst em Di agnosti cs. Debug. Assert (fal se);
return null;
}
public void destroy()
{
/1 Nothing to do
}

The object factory's cr eat e method is called by the Ice run time when it needs to instantiate a Ti neCf Day class. The factory's dest r oy method is
called by the Ice run time when its communicator is destroyed.

The cr eat e method is passed the type ID of the class to instantiate. For our Ti meCOf Day class, the type IDis ": : M : Ti neOf Day" . Our
implementation of cr eat e checks the type ID: if it matches, the method instantiates and returns a Ti meCOf Day| object. For other type IDs, the
method asserts because it does not know how to instantiate other types of objects.

Note that we used the i ce_st at i cl d method to obtain the type ID rather than embedding a literal string. Using a literal type ID string in your code
is discouraged because it can lead to errors that are only detected at run time. For example, if a Slice class or one of its enclosing modules is
renamed and the literal string is not changed accordingly, a receiver will fail to unmarshal the object and the Ice run time will raise NoObj ect Fact or
yException.Byusingice_staticld instead, we avoid any risk of a misspelled or obsolete type ID, and we can discover at compile time if a Slice
class or module has been renamed.

Given a factory implementation, such as our Obj ect Fact or y, we must inform the Ice run time of the existence of the factory:

C#

I ce. Communi cator ic = ...;
i c.addbj ect Fact ory(new Obj ect Factory(), M TinmeODay.ice_staticld());

Now, whenever the Ice run time needs to instantiate a class with the type ID ": : M : Ti meCf Day", it calls the cr eat e method of the registered Chj e
ct Fact ory instance, which returns a Ti meOf Day| instance to the Ice run time.

The dest r oy operation of the object factory is invoked by the Ice run time when the communicator is destroyed. This gives you a chance to clean up
any resources that may be used by your factory. Do not call dest r oy on the factory while it is registered with the communicator — if you do, the Ice
run time has no idea that this has happened and, depending on what your dest r oy implementation is doing, may cause undefined behavior when
the Ice run time tries to next use the factory.

The run time guarantees that dest r oy will be the last call made on the factory, that is, cr eat e will not be called concurrently with dest r oy, and cr e
at e will not be called once dest r oy has been called. However, calls to cr eat e can be made concurrently.

Note that you cannot register a factory for the same type ID twice: if you call addCbj ect Fact or y with a type ID for which a factory is registered, the
Ice run time throws an Al r eadyRegi st er edExcept i on.

Finally, keep in mind that if a class has only data members, but no operations, you need not create and register an object factory to transmit
instances of such a class. Only if a class has operations do you have to define and register an object factory.

Class Constructors in C#

Classes have a default constructor that default-constructs each data member. This means members of primitive type are initialized to the equivalent
of zero, and members of reference type are initialized to null. Note that applications must always explicitly initialize a member whose type is a class-
mapped structure because the Ice run time does not accept null as a legal value for these types.

If you wish to ensure that data members of primitive and enumerated types are initialized to specific values, you can declare default values in your Slic
e definition. The default constructor initializes each of these data members to its declared value.

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice34/Type+IDs
https://doc.zeroc.com/display/Ice34/C-Sharp+Mapping+for+Structures#CSharpMappingforStructures-Class
https://doc.zeroc.com/display/Ice34/C-Sharp+Mapping+for+Structures#CSharpMappingforStructures-Class
https://doc.zeroc.com/display/Ice34/Classes
https://doc.zeroc.com/display/Ice34/Classes

Ice 3.4.2 Documentation

Classes also provide a constructor that accepts one argument for each member of the class. This allows you to create and initialize a class in a
single statement, for example:

C#

Ti meCf Dayl tod = new Ti meOf Dayl (14, 45, 00); // 2:45pm

For derived classes, the constructor requires one argument for every member of the class, including inherited members. For example, consider the
the definition from Class Inheritance once more:

Slice

class Ti meOf Day {

short hour; // 0 - 23
short minute; // 0 - 59
short second; // 0 - 59

I

class DateTime extends TimeOf Day {
short day; /1 - 31
short nonth; /11 - 12
short year; /1 1753 onwards

}

The constructors for the generated classes are as follows:

C#

public partial class TineOiDay : |ce. Objectlnpl

{
public TimeO Day() {}
public TimeOf Day(short hour, short minute, short second)
{
t his. hour = hour;
this.mnute = minute;
this.second = second;
}
Il
}
public partial class DateTine : TineCO Day
{
public DateTime() : base() {}
publ i c DateTi ne(short hour,
short minute,
short second,
short day,
short nonth,
short year) : base(hour, mnute, second)
{
thi s. day = day;
this.month = nonth;
this.year = year;
}
11
}

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice34/Class+Inheritance

Ice 3.4.2 Documentation

If you want to instantiate and initialize a Dat eTi ne instance, you must either use the default constructor or provide values for all of the data members
of the instance, including data members of any base classes.

See Also

Classes

Class Inheritance

Type IDs

C-Sharp Mapping for Structures
The Current Object

Dispatch Interceptors

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice34/Classes
https://doc.zeroc.com/display/Ice34/Class+Inheritance
https://doc.zeroc.com/display/Ice34/Type+IDs
https://doc.zeroc.com/display/Ice34/C-Sharp+Mapping+for+Structures
https://doc.zeroc.com/display/Ice34/The+Current+Object
https://doc.zeroc.com/display/Ice34/Dispatch+Interceptors

	C-Sharp Mapping for Classes

