
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

C-Sharp Mapping for Classes
On this page:

Basic C# Mapping for Classes
Operations Interfaces in C#
Inheritance from Ice.Object in C#
Class Data Members in C#
Class Operations in C#
Class Factories in C#
Class Constructors in C#

Basic C# Mapping for Classes
A Slice is mapped to a C# class with the same name. By default, the generated class contains a public data member for each Slice data class
member (just as for structures and exceptions), and a member function for each operation. Alternatively, you can use the by property mapping
specifying the metadata directive, which generates classes with virtual properties instead of data members."clr:property"

Consider the following class definition:

Slice

class TimeOfDay {
 short hour; // 0 - 23
 short minute; // 0 - 59
 short second; // 0 - 59
 string format(); // Return time as hh:mm:ss
};

The Slice compiler generates the following code for this definition:

https://doc.zeroc.com/display/Ice34/Classes
https://doc.zeroc.com/display/Ice34/C-Sharp+Mapping+for+Structures#CSharpMappingforStructures-Property

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

1.

2.

3.
4.
5.

C#

public interface TimeOfDayOperations_
{
 string format(Ice.Current __current);
}

public interface TimeOfDayOperationsNC_
{
 string format();
}

public abstract partial class TimeOfDay
 : Ice.ObjectImpl,
 TimeOfDayOperations_,
 TimeOfDayOperationsNC_
{
 public short hour;
 public short minute;
 public short second;

 public TimeOfDay()
 {
 }

 public TimeOfDay(short hour, short minute, short second)
 {
 this.hour = hour;
 this.minute = minute;
 this.second = second;
 }

 public string format()
 {
 return format(new Ice.Current());
 }

 public abstract string format(Ice.Current __current);
}

There are a number of things to note about the generated code:

The compiler generates "operations interfaces" called and _. These interfaces TimeOfDayOperations_ TimeOfDayOperationsNC
contain a method for each Slice operation of the class.
The generated class inherits (indirectly) from . This means that all classes implicitly inherit from , TimeOfDay Ice.Object Ice.Object
which is the ultimate ancestor of all classes. Note that is the same as . In other words, you pass a Ice.Object not Ice.ObjectPrx cannot
class where a proxy is expected and vice versa.
If a class has only data members, but no operations, the compiler generates a non-abstract class.
The generated class contains a public member for each Slice data member.
The generated class inherits member functions for each Slice operation from the operations interfaces.
The generated class contains two constructors.

There is quite a bit to discuss here, so we will look at each item in turn.

Operations Interfaces in C#
The methods in the interface have an additional trailing parameter of type , whereas the methods Operations_<interface-name> Ice.Current
in the interface lack this additional trailing parameter. The methods without the parameter simply OperationsNC_<interface-name> Current
forward to the methods with a parameter, supplying a default . For now, you can ignore this parameter and pretend it does not Current Current
exist.

If a class has only data members, but no operations, the compiler omits generating the and Operations_<interface-name> <interface-
 interfaces.OperationsNC_name>

https://doc.zeroc.com/display/Ice34/The+Current+Object

Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

Inheritance from in C#Ice.Object
Like interfaces, classes implicitly inherit from a common base class, . However, as shown in the illustration below, classes inherit from Ice.Object I

 instead of (which is at the base of the inheritance hierarchy for proxies). As a result, you cannot pass a class where a ce.Object Ice.ObjectPrx
proxy is expected (and vice versa) because the base types for classes and proxies are not compatible.

Inheritance from and .Ice.ObjectPrx Ice.Object

Ice.Object contains a number of member functions:

C#

namespace Ice
{
 public interface Object : System.ICloneable
 {
 bool ice_isA(string s);
 bool ice_isA(string s, Current current);

 void ice_ping();
 void ice_ping(Current current);

 string[] ice_ids();
 string[] ice_ids(Current current);

 string ice_id();
 string ice_id(Current current);

 void ice_preMarshal();
 void ice_postUnmarshal();

 DispatchStatus ice_dispatch(Request request, DispatchInterceptorAsyncCallback cb);
 }
}

The member functions of behave as follows:Ice.Object

ice_isA
This function returns if the object supports the given , and otherwise.true type ID false

ice_ping
As for interfaces, provides a basic reachability test for the class.ice_ping

ice_ids
This function returns a string sequence representing all of the supported by this object, including .type IDs ::Ice::Object

ice_id
This function returns the actual run-time for a class. If you call through a reference to a base instance, the returned type id type ID ice_id
is the actual (possibly more derived) type ID of the instance.

ice_preMarshal
The Ice run time invokes this function prior to marshaling the object's state, providing the opportunity for a subclass to validate its declared
data members.

https://doc.zeroc.com/display/Ice34/Type+IDs
https://doc.zeroc.com/display/Ice34/Type+IDs
https://doc.zeroc.com/display/Ice34/Type+IDs

Ice 3.4.2 Documentation

4 Copyright © 2017, ZeroC, Inc.

ice_postUnmarshal
The Ice run time invokes this function after unmarshaling an object's state. A subclass typically overrides this function when it needs to
perform additional initialization using the values of its declared data members.

ice_dispatch
This function dispatches an incoming request to a servant. It is used in the implementation of .dispatch interceptors

Note that the generated class does override and . This means that classes are compared using shallow reference not GetHashCode Equals
equality, not value equality (as is used for structures).

The class also provides a method (whose implementation is inherited from); the method returns a shallow Clone Ice.ObjectImpl Clone
memberwise copy.

Class Data Members in C#
By default, data members of classes are mapped exactly as for structures and exceptions: for each data member in the Slice definition, the
generated class contains a corresponding public data member.

If you wish to restrict access to a data member, you can modify its visibility using the metadata directive. The presence of this directive protected
causes the Slice compiler to generate the data member with protected visibility. As a result, the member can be accessed only by the class itself or
by one of its subclasses. For example, the class shown below has the metadata directive applied to each of its data TimeOfDay protected
members:

Slice

class TimeOfDay {
 ["protected"] short hour; // 0 - 23
 ["protected"] short minute; // 0 - 59
 ["protected"] short second; // 0 - 59
 string format(); // Return time as hh:mm:ss
};

The Slice compiler produces the following generated code for this definition:

C#

public abstract partial class TimeOfDay
 : Ice.ObjectImpl,
 TimeOfDayOperations_,
 TimeOfDayOperationsNC_
{
 protected short hour;
 protected short minute;
 protected short second;

 public TimeOfDay()
 {
 }

 public TimeOfDay(short hour, short minute, short second)
 {
 this.hour = hour;
 this.minute = minute;
 this.second = second;
 }

 // ...
}

For a class in which all of the data members are protected, the metadata directive can be applied to the class itself rather than to each member
individually. For example, we can rewrite the class as follows:TimeOfDay

https://doc.zeroc.com/display/Ice34/Dispatch+Interceptors

Ice 3.4.2 Documentation

5 Copyright © 2017, ZeroC, Inc.

Slice

["protected"] class TimeOfDay {
 short hour; // 0 - 23
 short minute; // 0 - 59
 short second; // 0 - 59
 string format(); // Return time as hh:mm:ss
};

If a protected data member also has the directive, the generated property has protected visibility. Consider the class clr:property TimeOfDay
once again:

Slice

["protected", "clr:property"] class TimeOfDay {
 short hour; // 0 - 23
 short minute; // 0 - 59
 short second; // 0 - 59
 string format(); // Return time as hh:mm:ss
};

The effects of combining these two metadata directives are shown in the generated code below:

C#

public abstract partial class TimeOfDay
 : Ice.ObjectImpl,
 TimeOfDayOperations_,
 TimeOfDayOperationsNC_
{
 private short hour_prop;
 protected short hour {
 get {
 return hour_prop;
 }
 set {
 hour_prop = value;
 }
 }

 // ...
}

Refer to the for more information on the property mapping for data members.structure mapping

Class Operations in C#
Operations of classes are mapped to abstract member functions in the generated class. This means that, if a class contains operations (such as the f

 operation of our class), you must provide an implementation of the operation in a class that is derived from the generated class. ormat TimeOfDay
For example:

https://doc.zeroc.com/display/Ice34/C-Sharp+Mapping+for+Structures#CSharpMappingforStructures-Property

Ice 3.4.2 Documentation

6 Copyright © 2017, ZeroC, Inc.

C#

public class TimeOfDayI : TimeOfDay
{
 public string format(Ice.Current current)
 {
 return hour.ToString("D2") + ":"
 + minute.ToString("D2") + ":"
 + second.ToString("D2");
 }
}

Class Factories in C#
Having created a class such as , we have an implementation and we can instantiate the class, but we cannot receive it as TimeOfDayI TimeOfDayI
the return value or as an out-parameter from an operation invocation. To see why, consider the following simple interface:

Slice

interface Time {
 TimeOfDay get();
};

When a client invokes the operation, the Ice run time must instantiate and return an instance of the class. However, is get TimeOfDay TimeOfDay
an abstract class that cannot be instantiated. Unless we tell it, the Ice run time cannot magically know that we have created a class that TimeOfDayI
implements the abstract operation of the abstract class. In other words, we must provide the Ice run time with a factory that format TimeOfDay
knows that the abstract class has a concrete implementation. The interface provides us with the TimeOfDay TimeOfDayI Ice::Communicator
necessary operations:

Slice

module Ice {
 local interface ObjectFactory {
 Object create(string type);
 void destroy();
 };

 local interface Communicator {
 void addObjectFactory(ObjectFactory factory, string id);
 ObjectFactory findObjectFactory(string id);
 // ...
 };
};

To supply the Ice run time with a factory for our class, we must implement the interface:TimeOfDayI ObjectFactory

Ice 3.4.2 Documentation

7 Copyright © 2017, ZeroC, Inc.

C#

class ObjectFactory : Ice.ObjectFactory
{
 public Ice.Object create(string type)
 {
 if (type.Equals(M.TimeOfDay.ice_staticId()))
 return new TimeOfDayI();
 System.Diagnostics.Debug.Assert(false);
 return null;
 }

 public void destroy()
 {
 // Nothing to do
 }
}

The object factory's method is called by the Ice run time when it needs to instantiate a class. The factory's method is create TimeOfDay destroy
called by the Ice run time when its communicator is destroyed.

The method is passed the of the class to instantiate. For our class, the type ID is . Our create type ID TimeOfDay "::M::TimeOfDay"
implementation of checks the type ID: if it matches, the method instantiates and returns a object. For other type IDs, the create TimeOfDayI
method asserts because it does not know how to instantiate other types of objects.

Note that we used the method to obtain the type ID rather than embedding a literal string. Using a literal type ID string in your code ice_staticId
is discouraged because it can lead to errors that are only detected at run time. For example, if a Slice class or one of its enclosing modules is
renamed and the literal string is not changed accordingly, a receiver will fail to unmarshal the object and the Ice run time will raise NoObjectFactor

. By using instead, we avoid any risk of a misspelled or obsolete type ID, and we can discover at compile time if a Slice yException ice_staticId
class or module has been renamed.

Given a factory implementation, such as our , we must inform the Ice run time of the existence of the factory:ObjectFactory

C#

Ice.Communicator ic = ...;
ic.addObjectFactory(new ObjectFactory(), M.TimeOfDay.ice_staticId());

Now, whenever the Ice run time needs to instantiate a class with the type ID , it calls the method of the registered "::M::TimeOfDay" create Obje
 instance, which returns a instance to the Ice run time.ctFactory TimeOfDayI

The operation of the object factory is invoked by the Ice run time when the communicator is destroyed. This gives you a chance to clean up destroy
any resources that may be used by your factory. Do not call on the factory while it is registered with the communicator — if you do, the Ice destroy
run time has no idea that this has happened and, depending on what your implementation is doing, may cause undefined behavior when destroy
the Ice run time tries to next use the factory.

The run time guarantees that will be the last call made on the factory, that is, will not be called concurrently with , and destroy create destroy cre
 will not be called once has been called. However, calls to can be made concurrently.ate destroy create

Note that you cannot register a factory for the same type ID twice: if you call with a type ID for which a factory is registered, the addObjectFactory
Ice run time throws an .AlreadyRegisteredException

Finally, keep in mind that if a class has only data members, but no operations, you need not create and register an object factory to transmit
instances of such a class. Only if a class has operations do you have to define and register an object factory.

Class Constructors in C#
Classes have a default constructor that default-constructs each data member. This means members of primitive type are initialized to the equivalent
of zero, and members of reference type are initialized to null. Note that applications must always explicitly initialize a member whose type is a class-

 because the Ice run time does not accept null as a legal value for these types.mapped structure

If you wish to ensure that data members of primitive and enumerated types are initialized to specific values, you can declare default values in your Slic
. The default constructor initializes each of these data members to its declared value.e definition

https://doc.zeroc.com/display/Ice34/Type+IDs
https://doc.zeroc.com/display/Ice34/C-Sharp+Mapping+for+Structures#CSharpMappingforStructures-Class
https://doc.zeroc.com/display/Ice34/C-Sharp+Mapping+for+Structures#CSharpMappingforStructures-Class
https://doc.zeroc.com/display/Ice34/Classes
https://doc.zeroc.com/display/Ice34/Classes

Ice 3.4.2 Documentation

8 Copyright © 2017, ZeroC, Inc.

Classes also provide a constructor that accepts one argument for each member of the class. This allows you to create and initialize a class in a
single statement, for example:

C#

TimeOfDayI tod = new TimeOfDayI(14, 45, 00); // 2:45pm

For derived classes, the constructor requires one argument for every member of the class, including inherited members. For example, consider the
the definition from once more:Class Inheritance

Slice

class TimeOfDay {
 short hour; // 0 - 23
 short minute; // 0 - 59
 short second; // 0 - 59
};

class DateTime extends TimeOfDay {
 short day; // 1 - 31
 short month; // 1 - 12
 short year; // 1753 onwards
};

The constructors for the generated classes are as follows:

C#

public partial class TimeOfDay : Ice.ObjectImpl
{
 public TimeOfDay() {}

 public TimeOfDay(short hour, short minute, short second)
 {
 this.hour = hour;
 this.minute = minute;
 this.second = second;
 }

 // ...
}

public partial class DateTime : TimeOfDay
{
 public DateTime() : base() {}

 public DateTime(short hour,
 short minute,
 short second,
 short day,
 short month,
 short year) : base(hour, minute, second)
 {
 this.day = day;
 this.month = month;
 this.year = year;
 }

 // ...
}

https://doc.zeroc.com/display/Ice34/Class+Inheritance

Ice 3.4.2 Documentation

9 Copyright © 2017, ZeroC, Inc.

If you want to instantiate and initialize a instance, you must either use the default constructor or provide values for all of the data members DateTime
of the instance, including data members of any base classes.

See Also

Classes
Class Inheritance
Type IDs
C-Sharp Mapping for Structures
The Current Object
Dispatch Interceptors

https://doc.zeroc.com/display/Ice34/Classes
https://doc.zeroc.com/display/Ice34/Class+Inheritance
https://doc.zeroc.com/display/Ice34/Type+IDs
https://doc.zeroc.com/display/Ice34/C-Sharp+Mapping+for+Structures
https://doc.zeroc.com/display/Ice34/The+Current+Object
https://doc.zeroc.com/display/Ice34/Dispatch+Interceptors

	C-Sharp Mapping for Classes

