
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

C-Sharp Mapping for Exceptions
On this page:

Inheritance Hierarchy for Exceptions in C#
C# Mapping for User Exceptions
C# Default Constructors for User Exceptions
C# Mapping for Run-Time Exceptions

Inheritance Hierarchy for Exceptions in C#
The mapping for exceptions is based on the inheritance hierarchy shown below:

Inheritance structure for exceptions.

The ancestor of all exceptions is . Derived from that is , which provides the definitions of a number of System.Exception Ice.Exception
constructors. and are derived from and form the base of all run-time and user Ice.LocalException Ice.UserException Ice.Exception
exceptions, respectively.

The constructors defined in have the following signatures:Ice.Exception

C#

public abstract class Exception : System.Exception
{
 public Exception();
 public Exception(System.Exception ex);
}

Each concrete derived exception class implements these constructors. The second constructor initializes the property of InnerException System.
. (Both constructors set the property to the empty string.)Exception Message

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

C# Mapping for User Exceptions
Here is a fragment of the once more:Slice definition for our world time server

Slice

exception GenericError {
 string reason;
};

exception BadTimeVal extends GenericError {};

exception BadZoneName extends GenericError {};

These exception definitions map as follows:

C#

public partial class GenericError : Ice.UserException
{
 public string reason;

 public GenericError();
 public GenericError(System.Exception ex__);
 public GenericError(string reason);
 public GenericError(string reason, System.Exception ex__);

 // GetHashCode and comparison methods defined here,
 // as well as mapping-internal methods.
}

public partial class BadTimeVal : M.GenericError
{
 public BadTimeVal();
 public BadTimeVal(System.Exception ex__);
 public BadTimeVal(string reason);
 public BadTimeVal(string reason, System.Exception ex__);

 // GetHashCode and comparison methods defined here,
 // as well as mapping-internal methods.
}

public partial class BadZoneName : M.GenericError
{
 public BadZoneName();
 public BadZoneName(System.Exception ex__);
 public BadZoneName(string reason);
 public BadZoneName(string reason, System.Exception ex__);

 // GetHashCode and comparison methods defined here,
 // as well as mapping-internal methods.
}

Each Slice exception is mapped to a C# partial class with the same name. For each exception member, the corresponding class contains a public
data member. (Obviously, because and do not have members, the generated classes for these exceptions also do not BadTimeVal BadZoneName
have members.)

The inheritance structure of the Slice exceptions is preserved for the generated classes, so and inherit from BadTimeVal BadZoneName GenericEr
.ror

All user exceptions are derived from the base class . This allows you to catch all user exceptions generically by installing a Ice.UserException
handler for . Similarly, you can catch all Ice run-time exceptions with a handler for , and you can catch Ice.UserException Ice.LocalException
all Ice exceptions with a handler for .Ice.Exception

https://doc.zeroc.com/display/Ice34/Proxies

Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

All exceptions provide the usual and methods, as well as the and comparison operators.GetHashCode Equals == !=

The generated exception classes also contain other member functions that are not shown here; these member functions are internal to the C#
mapping and are not meant to be called by application code.

C# Default Constructors for User Exceptions
Exceptions have a default constructor that default-constructs each data member. This means members of primitive type are initialized to the
equivalent of zero, and members of reference type are initialized to null. Note that applications must always explicitly initialize a member whose type
is a class-mapped structure because the Ice run time does not accept null as a legal value for these types.

If you wish to ensure that data members of primitive and enumerated types are initialized to specific values, you can declare default values in your Slic
. The default constructor initializes each of these data members to its declared value.e definition

Exceptions also provide constructors that accept one parameter for each data member. This allows you to construct and initialize a class instance in
a single statement (instead of first having to construct the instance and then assign to its members). For derived exceptions, these constructors
accept one argument for each base exception member, plus one argument for each derived exception member, in base-to-derived order.

C# Mapping for Run-Time Exceptions
The Ice run time throws run-time exceptions for a number of pre-defined error conditions. All run-time exceptions directly or indirectly derive from Ice

 (which, in turn, derives from)..LocalException Ice.Exception

Ice.LocalException implements a method that is inherited by its derived exceptions, so you can make memberwise shallow copies of Clone
exceptions.

By catching exceptions at the appropriate point in the inheritance hierarchy, you can handle exceptions according to the category of error they
indicate:

Ice.Exception
This is the root of the inheritance tree for both run-time and user exceptions.

Ice.LocalException
This is the root of the inheritance tree for run-time exceptions.

Ice.UserException
This is the root of the inheritance tree for user exceptions.

Ice.TimeoutException
This is the base exception for both operation-invocation and connection-establishment timeouts.

Ice.ConnectTimeoutException
This exception is raised when the initial attempt to establish a connection to a server times out.

For example, a can be handled as , , , or ConnectTimeoutException ConnectTimeoutException TimeoutException LocalException Exc
.eption

You will probably have little need to catch run-time exceptions as their most-derived type and instead catch them as ; the fine-LocalException
grained error handling offered by the remainder of the hierarchy is of interest mainly in the implementation of the Ice run time. Exceptions to this rule
are the exceptions related to and life cycles, which you may want to catch explicitly. These exceptions are facet object FacetNotExistException
and , respectively.ObjectNotExistException

See Also

User Exceptions
Run-Time Exceptions
C-Sharp Mapping for Identifiers
C-Sharp Mapping for Modules
C-Sharp Mapping for Built-In Types
C-Sharp Mapping for Enumerations
C-Sharp Mapping for Structures
C-Sharp Mapping for Sequences
C-Sharp Mapping for Dictionaries
C-Sharp Collection Comparison
C-Sharp Mapping for Constants
Facets and Versioning
Object Life Cycle

https://doc.zeroc.com/display/Ice34/User+Exceptions
https://doc.zeroc.com/display/Ice34/User+Exceptions
https://doc.zeroc.com/display/Ice34/Facets+and+Versioning
https://doc.zeroc.com/display/Ice34/Object+Life+Cycle
https://doc.zeroc.com/display/Ice34/User+Exceptions
https://doc.zeroc.com/display/Ice34/Run-Time+Exceptions
https://doc.zeroc.com/display/Ice34/C-Sharp+Mapping+for+Identifiers
https://doc.zeroc.com/display/Ice34/C-Sharp+Mapping+for+Modules
https://doc.zeroc.com/display/Ice34/C-Sharp+Mapping+for+Built-In+Types
https://doc.zeroc.com/display/Ice34/C-Sharp+Mapping+for+Enumerations
https://doc.zeroc.com/display/Ice34/C-Sharp+Mapping+for+Structures
https://doc.zeroc.com/display/Ice34/C-Sharp+Mapping+for+Sequences
https://doc.zeroc.com/display/Ice34/C-Sharp+Mapping+for+Dictionaries
https://doc.zeroc.com/display/Ice34/C-Sharp+Collection+Comparison
https://doc.zeroc.com/display/Ice34/C-Sharp+Mapping+for+Constants
https://doc.zeroc.com/display/Ice34/Facets+and+Versioning
https://doc.zeroc.com/display/Ice34/Object+Life+Cycle

	C-Sharp Mapping for Exceptions

