Ice 3.4.2 Documentation

Server-Side C-Sharp Mapping for Interfaces

The server-side mapping for interfaces provides an up-call API for the Ice run time: by implementing methods in a servant class, you provide the
hook that gets the thread of control from the Ice server-side run time into your application code.

On this page:

® Skeleton Classes in C#
® Servant Classes in C#
o Server-Side Normal and idempotent Operations in C#

Skeleton Classes in C#

On the client side, interfaces map to proxy classes. On the server side, interfaces map to skeleton classes. A skeleton is a class that has an abstract
method for each operation on the corresponding interface. For example, consider our Slice definition for the Node interface:

Slice

nmodul e Fil esystem {
interface Node {
i denpotent string nane();
/1
I

The Slice compiler generates the following definition for this interface:

C#

nanespace Filesystem

{
public interface NodeOperations_
{
string name(lce.Current _ _current);
}
public interface NodeOperati onsNC_
{
string name();
}
public interface Node : Ice. Object, NodeQperations_, NodeQperationsNC_
{
}
public abstract class NodeDisp_ : lce. Ojectlnpl, Node
{
public string nane()
{
return nane(new lce.Current());
}
public abstract string name(lce.Current __current);
/1 Mapping-internal code here...
}
}

The important points to note here are:

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice34/C-Sharp+Mapping+for+Interfaces
https://doc.zeroc.com/display/Ice34/Slice+for+a+Simple+File+System

Ice 3.4.2 Documentation

® As for the client side, Slice modules are mapped to C# namespaces with the same name, so the skeleton class definitions are part of the Fi
| esyst emnamespace.

® For each Slice interface <i nt er f ace- name>, the compiler generates C# interfaces <i nt er f ace- nane>Qper ati ons_ and <i nt er f ace
- nane>Cper ati onsNC_ (NodeQper at i ons_ and NodeQper at i onsNC_ in this example). These interfaces contain a method for each
operation in the Slice interface. (You can ignore the | ce. Curr ent parameter for the now.)

® For each Slice interface <i nt er f ace- nane>, the compiler generates a C# interface <i nt er f ace- nane> (Node in this example). That
interface extends | ce. Cbj ect and the two operations interfaces.

® For each Slice interface <i nt er f ace- nane>, the compiler generates an abstract class <i nt er f ace- nane>Di sp_ (NodeDi sp__in this
example). This abstract class is the actual skeleton class; it is the base class from which you derive your servant class.

Servant Classes in C#

In order to provide an implementation for an Ice object, you must create a servant class that inherits from the corresponding skeleton class. For
example, to create a servant for the Node interface, you could write:

C#

public class Nodel : NodeDi sp_

{

public Nodel (string nane)

{
_name = nane;
}
public override string name(lce.Current current)
{
return _nane;
}

private string _nane;

By convention, servant classes have the name of their interface with an | -suffix, so the servant class for the Node interface is called Nodel . (This is
a convention only: as far as the Ice run time is concerned, you can choose any name you prefer for your servant classes.) Note that Nodel extends N
odeDi sp_, that is, it derives from its skeleton class.

As far as Ice is concerned, the Nodel class must implement only a single method: the abstract name method that it inherits from its skeleton. This
makes the servant class a concrete class that can be instantiated. You can add other methods and data members as you see fit to support your
implementation. For example, in the preceding definition, we added a _nanme member and a constructor. (Obviously, the constructor initializes the _na
me member and the name method returns its value.)

Server-Side Normal and i denpot ent Operations in C#

Whether an operation is an ordinary operation or an i denpot ent operation has no influence on the way the operation is mapped. To illustrate this,
consider the following interface:

Slice

interface Exanple {

3

voi d nor mal Op();
i denpotent void i dempot ent Op() ;

The operations class for this interface looks like this:

C#

public interface Exanpl eOperations_

{

voi d normal Op(lce.Current __current);

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice34/The+Current+Object

Ice 3.4.2 Documentation

voi d idenpotent Op(lce.Current __current);

Note that the signatures of the methods are unaffected by the i denpot ent qualifier.

See Also

Slice for a Simple File System
Parameter Passing in C-Sharp
Raising Exceptions in C-Sharp
Tie Classes in C-Sharp

The Current Object

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice34/Slice+for+a+Simple+File+System
https://doc.zeroc.com/display/Ice34/Parameter+Passing+in+C-Sharp
https://doc.zeroc.com/display/Ice34/Raising+Exceptions+in+C-Sharp
https://doc.zeroc.com/display/Ice34/Tie+Classes+in+C-Sharp
https://doc.zeroc.com/display/Ice34/The+Current+Object

	Server-Side C-Sharp Mapping for Interfaces

