
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

The C++ Thread Classes
The server-side Ice run time by default creates a for you and automatically dispatches each incoming request in its own thread. As a thread pool
result, you usually only need to worry about synchronization among threads to protect critical regions when you implement a server. However, you
may wish to create threads of your own. For example, you might need a dedicated thread that responds to input from a user interface. And, if you
have complex and long-running operations that can exploit parallelism, you might wish to use multiple threads for the implementation of that
operation.

Ice provides a simple thread abstraction that permits you to write portable source code regardless of the native threading platform. This shields you
from the native underlying thread APIs and guarantees uniform semantics regardless of your deployment platform.

On this page:

The C++ Thread Class
Implementing Threads in C++
Creating Threads in C++
The C++ ThreadControl Class
C++ Thread Example

The C++ ClassThread
The basic thread abstraction in Ice is provided by two classes, and (defined in):ThreadControl Thread IceUtil/Thread.h

https://doc.zeroc.com/display/Ice34/The+Ice+Threading+Model

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

C++

namespace IceUtil {

 class Time;

 class ThreadControl {
 public:
#ifdef _WIN32
 typedef DWORD ID;
#else
 typedef pthread_t ID;
#endif

 ThreadControl();
#ifdef _WIN32
 ThreadControl(HANDLE, DWORD);
#else
 ThreadControl(explicit pthread_t);
#endif
 ID id() const;

 void join();
 void detach();

 static void sleep(const Time&);
 static void yield();

 bool operator==(const ThreadControl&) const;
 bool operator!=(const ThreadControl&) const;

 };

 class Thread :virtual public Shared {
 public:
 virtual void run() = 0;

 ThreadControl start(size_t stBytes = 0);
 ThreadControl start(size_t stBytes, int priority);
 ThreadControl getThreadControl() const;
 bool isAlive() const;

 bool operator==(const Thread&) const;
 bool operator!=(const Thread&) const;
 bool operator<(const Thread&) const;
 };
 typedef Handle<Thread> ThreadPtr;
}

The class is an abstract base class with a pure virtual method. To create a thread, you must specialize the class and Thread run Thread
implement the method (which becomes the starting stack frame for the new thread). Note that you must not allow any exceptions to escape from run

. The Ice run time installs an exception handler that calls if terminates with an exception.run ::std::terminate run

The remaining member functions behave as follows:

start(size_t stBytes = 0)
start(size_t stBytes, int priority)
This member function starts a newly-created thread (that is, calls the method). The parameter specifies a stack size (in bytes) run stBytes
for the thread. The default value of zero creates the thread with a default stack size that is determined by the operating system.

You can also specify a priority for the thread. (If you do not supply a priority, the thread is created with the system default priority.) The
priority value is system-dependent; on POSIX systems, the value must be a legal value for the real-time scheduling policy. (SCHED_RR SCHE

 requires root privileges.) On Windows systems, the priority value is passed through to the Windows function. D_RR setThreadPriority Pr
 provides information about how you can deal with priority inversion. iority Inversion in C++

The return value is a object for the new thread. ThreadControl

https://doc.zeroc.com/pages/viewpage.action?pageId=5048230
https://doc.zeroc.com/pages/viewpage.action?pageId=5048230

Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

You can start a thread only once; calling on an already-started thread raises . start ThreadStartedException

If the calling thread passes an invalid priority or, on POSIX systems, does not have root privileges, raises start ThreadSyscallExcepti
.on

getThreadControl
This member function returns a object for the thread on which it is invoked. Calling this method before calling ThreadControl start
raises a .ThreadNotStartedException

id
This method returns the underlying thread ID (for Windows and for POSIX threads). This method is provided mainly for DWORD pthread_t
debugging purposes. Note also that is, strictly-speaking, an opaque type, so you should not make any assumptions about what pthread_t
you can do with a thread ID.

isAlive
This method returns false before a thread's method has been called and after a thread's method has completed; otherwise, start run
while the thread is still running, it returns true. is useful to implement a non-blocking join:isAlive

C++

ThreadPtr p = new MyThread();
// ...
while(p->isAlive()) {
 // Do something else...
}
p->getThreadControl().join(); // Will not block

operator==
operator!=
operator<
These member functions compare the in-memory address of two threads. They are provided so you can use objects in sorted STL Thread
containers.

Note that also defines the type . This is the usual reference-counted to guarantee automatic clean-up: the IceUtil ThreadPtr smart pointer Thread
destructor calls once its reference count drops to zero.delete this

Implementing Threads in C++
To illustrate how to implement threads, consider the following code fragment:

C++

#include <IceUtil/Thread.h>
// ...

Queue q;

class ReaderThread : public IceUtil::Thread {
 virtual void run() {
 for (int i = 0; i < 100; ++i)
 cout << q.get() << endl;
 }
};

class WriterThread : public IceUtil::Thread {
 virtual void run() {
 for (int i = 0; i < 100; ++i)
 q.put(i);
 }
};

https://doc.zeroc.com/display/Ice34/Smart+Pointers+for+Classes

Ice 3.4.2 Documentation

4 Copyright © 2017, ZeroC, Inc.

1.
2.
3.

4.

This code fragment defines two classes, and , that inherit from . Each class implements the ReaderThread WriterThread IceUtil::Thread
pure virtual method it inherits from its base class. For this simple example, a writer thread places the numbers from 1 to 100 into an instance of run
the thread-safe class we defined in our discussion of , and a reader thread retrieves 100 numbers from the queue and prints them to Queue monitors s

.tdout

Creating Threads in C++
To create a new thread, we simply instantiate the thread and call its method:start

C++

IceUtil::ThreadPtr t = new ReaderThread;
t->start();
// ...

Note that we assign the return value from to a smart pointer of type . This ensures that we do not suffer a memory leak:new ThreadPtr

When the thread is created, its reference count is set to zero.
Prior to calling (which is called by the method), increments the reference count of the thread to 1.run start start
For each for the thread, the reference count of the thread is incremented by 1, and for each that is destroyed, the ThreadPtr ThreadPtr
reference count is decremented by 1.
When completes, decrements the reference count again and then checks its value: if the value is zero at this point, the run start Thread
object deallocates itself by calling ; if the value is non-zero at this point, there are other smart pointers that reference this delete this Thre

 object and deletion happens when the last smart pointer goes out of scope.ad

Note that, for all this to work, you allocate your objects on the heap — stack-allocated objects will result in deallocation errors:must Thread Thread

C++

ReaderThread thread;
IceUtil::ThreadPtr t = &thread; // Bad news!!!

This is wrong because the destructor of will eventually call , which has undefined behavior for a stack-allocated object.t delete

Similarly, you use a for an allocated thread. Do not attempt to explicitly delete a thread:must ThreadPtr

C++

Thread* t = new ReaderThread();

// ...

delete t; // Disaster!

This will result in a double deallocation of the thread because the thread's destructor will call .delete this

It is legal for a thread to call on itself from within its own constructor. However, if so, the thread must not be (very) short lived:start

https://doc.zeroc.com/pages/viewpage.action?pageId=5048235

Ice 3.4.2 Documentation

5 Copyright © 2017, ZeroC, Inc.

C++

class ActiveObject : public Thread() {
public:
 ActiveObject() {
 start();
 }

 void done() {
 getThreadControl().join();
 }

 virtual void run() {
 // *Very* short lived...
 }
};
typedef Handle<ActiveObject> ActiveObjectPtr;

// ...

ActiveObjectPtr ao = new ActiveObject;

With this code, it is possible for to complete before the assignment to the smart pointer completes; in that case, will call run ao start delete
 before it returns and ends up deleting an already-deleted object. However, note that this problem can arise only if is indeed very short-this; ao run

lived and moreover, the scheduler allows the newly-created thread to run to completion before the assignment of the return value of operator new
to takes place. This is highly unlikely to happen — if you are concerned about this scenario, do not call from within a thread's own ao start
constructor. That way, the smart pointer is assigned first, and the thread started second, so the problem cannot arise.

The C++ ClassThreadControl
The method returns an object of type . The member functions of behave as follows:start ThreadControl ThreadControl

ThreadControl
The default constructor returns a object that refers to the calling thread. This allows you to get a handle to the current ThreadControl
(calling) thread even if you had not previously saved a handle to that thread. For example:

C++

IceUtil::ThreadControl self; // Get handle to self
cout << self.id() << endl; // Print thread ID

This example also explains why we have two classes, and : without a separate , it would not be Thread ThreadControl ThreadControl
possible to obtain a handle to an arbitrary thread. (Note that this code works even if the calling thread was not created by the Ice run time;
for example, you can create a object for a thread that was created by the operating system.) ThreadControl

The (implicit) copy constructor and assignment operator create a object that refers to the same underlying thread as the ThreadControl
source object. ThreadControl

Note that the constructor is overloaded. For Windows, the signature is

C++

ThreadControl(HANDLE, DWORD);

For Unix, the signature is

Ice 3.4.2 Documentation

6 Copyright © 2017, ZeroC, Inc.

C++

ThreadControl(pthread_t);

These constructors allow you to create a object for the specified thread.ThreadControl

join
This method suspends the calling thread until the thread on which is called has terminated. For example:join

C++

IceUtil::ThreadPtr t = new ReaderThread; // Create a thread
IceUtil::ThreadControl tc = t->start(); // Start it
tc.join(); // Wait for it

If the reader thread has finished by the time the creating thread calls , the call to returns immediately; otherwise, the creating join join
thread is suspended until the reader thread terminates.

Note that the method of a thread must be called from only one other thread, that is, only one thread can wait for another thread to join
terminate. Calling on a thread from more than one other thread has undefined behavior. join

Calling on a thread that was previously joined with or calling on a detached thread has undefined behavior.join join
You must join with each thread you create; failure to join with a thread has undefined behavior.

detach
This method detaches a thread. Once a thread is detached, it cannot be joined with.

Calling on an already detached thread, or calling on a thread that was previously joined with has undefined behavior. detach detach

Note that, if you have detached a thread, you must ensure that the detached thread has terminated before your program leaves its main
function. This means that, because detached threads cannot be joined with, they must have a life time that is shorter than that of the main
thread.

sleep
This method suspends the calling thread for the amount of time specified by the class.Time

yield
This method causes the calling thread to relinquish the CPU, allowing another thread to run.

operator==
operator!=
These operators compare thread IDs. (Note that is not provided because it cannot be implemented portably.) These operators operator<
yield meaningful results only for threads that have not been detached or joined with.

As for all the synchronization primitives, you must adhere to a few rules when using threads to avoid undefined behavior:

Do not allow to throw an exception.run
Do not join with or detach a thread that you have not created yourself.
For every thread you create, you must either join with that thread exactly once or detach it exactly once; failure to do so may cause resource
leaks.
Do not call on a thread from more than one other thread.join
Do not leave until all other threads you have created have terminated.main
Do not leave until after you have destroyed all objects you have created (or use the main Ice::Communicator Ice::Application
class).
A common mistake is to call from within a critical region. Doing so is usually pointless because the call to will look for another yield yield
thread that can be run but, when that thread is run, it will most likely try to enter the critical region that is held by the yielding thread and go
to sleep again. At best, this achieves nothing and, at worst, it causes many additional context switches for no gain. If you call , do so yield
only in circumstances where there is at least a fair chance that another thread will actually be able to run and do something useful.

C++ Thread Example
Following is a small example that uses the class we defined in our discussion of . We create five writer and five reader threads. The Queue monitors
writer threads each deposit 100 numbers into the queue, and the reader threads each retrieve 100 numbers and print them to :stdout

https://doc.zeroc.com/pages/viewpage.action?pageId=5047945
https://doc.zeroc.com/pages/viewpage.action?pageId=5047931#TheServerSidemainFunctioninC++-application
https://doc.zeroc.com/pages/viewpage.action?pageId=5048235

Ice 3.4.2 Documentation

7 Copyright © 2017, ZeroC, Inc.

C++

#include <vector>
#include <IceUtil/Thread.h>
// ...

Queue q;

class ReaderThread : public IceUtil::Thread {
 virtual void run() {
 for (int i = 0; i < 100; ++i)
 cout << q.get() << endl;
 }
};

class WriterThread : public IceUtil::Thread {
 virtual void run() {
 for (int i = 0; i < 100; ++i)
 q.put(i);
 }
};

int
main()
{
 vector<IceUtil::ThreadControl> threads;
 int i;

 // Create five reader threads and start them
 //
 for (i = 0; i < 5; ++i) {
 IceUtil::ThreadPtr t = new ReaderThread;
 threads.push_back(t->start());
 }

 // Create five writer threads and start them
 //
 for (i = 0; i < 5; ++i) {
 IceUtil::ThreadPtr t = new WriterThread;
 threads.push_back(t->start());
 }

 // Wait for all threads to finish
 //
 for (vector<IceUtil::ThreadControl>::iterator i = threads.begin();
 i != threads.end(); ++i) {
 i->join();
 }
}

The code uses the variable, of type , to keep track of the created threads. The code creates five threads vector<IceUtil::ThreadControl>
reader and five writer threads, storing the object for each thread in the vector. Once all the threads are created and ThreadControl threads
running, the code joins with each thread before returning from .main

Note that you must not leave without first joining with the threads you have created: many threading libraries crash if you return from with main main
other threads still running. (This is also the reason why you must not terminate a program without first calling ; the Communicator::destroy destr

 implementation joins with all outstanding threads before it returns.)oy

See Also

Smart Pointers for Classes
The Server-Side main Function in C++
The C++ Monitor Class
The Ice Threading Model
The C++ Time Class

https://doc.zeroc.com/pages/viewpage.action?pageId=5047931
https://doc.zeroc.com/display/Ice34/Smart+Pointers+for+Classes
https://doc.zeroc.com/pages/viewpage.action?pageId=5047931
https://doc.zeroc.com/pages/viewpage.action?pageId=5048235
https://doc.zeroc.com/display/Ice34/The+Ice+Threading+Model
https://doc.zeroc.com/pages/viewpage.action?pageId=5047945

Ice 3.4.2 Documentation

8 Copyright © 2017, ZeroC, Inc.

	The C++ Thread Classes

