
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

The C++ Monitor Class
The and mutex classes implement a simple mutual exclusion mechanism that allows only a single thread to be active in a recursive non-recursive
critical region at a time. In particular, for a thread to enter the critical region, another thread must leave it. This means that, with mutexes, it is
impossible to suspend a thread inside a critical region and have that thread wake up again at a later time, for example, when a condition becomes
true.

To address this problem, Ice provides a monitor. Briefly, a monitor is a synchronization mechanism that protects a critical region: as for a mutex, only
one thread may be active at a time inside the critical region. However, a monitor allows you to suspend a thread inside the critical region; doing so
allows another thread to enter the critical region. The second thread can either leave the monitor (thereby unlocking the monitor), or it can suspend
itself inside the monitor; either way, the original thread is woken up and continues execution inside the monitor. This extends to any number of
threads, so several threads can be suspended inside a monitor.

Monitors provide a more flexible mutual exclusion mechanism than mutexes because they allow a thread to check a condition and, if the condition is
false, put itself to sleep; the thread is woken up by some other thread that has changed the condition.

On this page:

Monitor Member Functions
Using Monitors in C++
Efficient Notification using Monitors in C++

Monitor Member Functions
Ice provides monitors with the class (defined in):IceUtil::Monitor IceUtil/Monitor.h

C++

namespace IceUtil {

 template <class T>
 class Monitor {
 public:
 void lock() const;
 void unlock() const;
 bool tryLock() const;

 void wait() const;
 bool timedWait(const Time&) const;
 void notify();
 void notifyAll();

 typedef LockT<Monitor<T> > Lock;
 typedef TryLockT<Monitor<T> > TryLock;
 };
}

Note that is a template class that requires either or as its template parameter. (Instantiating a with a Monitor Mutex RecMutex Monitor RecMutex
makes the monitor recursive.)

The member functions behave as follows:

lock
This function attempts to lock the monitor. If the monitor is currently locked by another thread, the calling thread is suspended until the
monitor becomes available. The call returns with the monitor locked.

tryLock
This function attempts to lock a monitor. If the monitor is available, the call returns true with the monitor locked. If the monitor is locked by
another thread, the call returns false.

The monitors provided by Ice have semantics, so called because they were first implemented by the Mesa programming language Mesa [1]
. Mesa monitors are provided by a number of languages, including Java and Ada. With Mesa semantics, the signalling thread continues to
run and another thread gets to run only once the signalling thread suspends itself or leaves the monitor.

https://doc.zeroc.com/pages/viewpage.action?pageId=5048233
https://doc.zeroc.com/pages/viewpage.action?pageId=5048234

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

unlock
This function unlocks a monitor. If other threads are waiting to enter the monitor (are blocked inside a call to), one of the threads is lock
woken up and locks the monitor.

wait
This function suspends the calling thread and, at the same time, releases the lock on the monitor. A thread suspended inside a call to wait
can be woken up by another thread that calls or . When the call returns, the suspended thread resumes execution with notify notifyAll
the monitor locked.

timedWait
This function suspends the calling thread for up to the specified timeout. If another thread calls or and wakes up the notify notifyAll
suspended thread before the timeout expires, the call returns true and the suspended thread resumes execution with the monitor locked.
Otherwise, if the timeout expires, the function returns false. Wait intervals are represented by instances of the class.Time

notify
This function wakes up a single thread that is currently suspended in a call to or . If no thread is suspended in a call to wait timedWait wait
or at the time is called, the notification is lost (that is, calls to are remembered if there is no thread to be timedWait notify notify not
woken up). Note that notifying does not run another thread immediately. Another thread gets to run only once the notifying thread either calls

 or or unlocks the monitor (Mesa semantics).wait timedWait

notifyAll
This function wakes up all threads that are currently suspended in a call to or . As for , calls to are wait timedWait notify notifyAll
lost if no threads are suspended at the time. Also as for , causes other threads to run only once the notifying thread has notify notifyAll
either called or or unlocked the monitor (Mesa semantics).wait timedWait

You must adhere to a few rules for monitors to work correctly:

Do not call unless you hold the lock. If you instantiate a monitor with a recursive mutex, you get recursive semantics, that is, you unlock
must call as many times as you have called (or) for the monitor to become available.unlock lock tryLock
Do not call or unless you hold the lock.wait timedWait
Do not call or unless you hold the lock.notify notifyAll
When returning from a call, you re-test the condition before proceeding (as shown below).wait must

Using Monitors in C++
To illustrate how to use a monitor, consider a simple unbounded queue of items. A number of producer threads add items to the queue, and a
number of consumer threads remove items from the queue. If the queue becomes empty, consumers must wait until a producer puts a new item on
the queue. The queue itself is a critical region, that is, we cannot allow a producer to put an item on the queue while a consumer is removing an item.
Here is a very simple implementation of a such a queue:

C++

template<class T> class Queue {
public:
 void put(const T& item) {
 _q.push_back(item);
 }

 T get() {
 T item = _q.front();
 _q.pop_front();
 return item;
 }

private:
 list<T> _q;
};

As you can see, producers call the method to enqueue an item, and consumers call the method to dequeue an item. Obviously, this put get
implementation of the queue is not thread-safe and there is nothing to stop a consumer from attempting to dequeue an item from an empty queue.

Here is a version of the queue that uses a monitor to suspend a consumer if the queue is empty:

https://doc.zeroc.com/pages/viewpage.action?pageId=5047945

Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

1.

2.

C++

#include <IceUtil/Monitor.h>

template<class T> class Queue : public IceUtil::Monitor<IceUtil::Mutex> {
public:
 void put(const T& item) {
 IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
 _q.push_back(item);
 notify();
 }

 T get() {
 IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
 while (_q.size() == 0)
 wait();
 T item = _q.front();
 _q.pop_front();
 return item;
 }

private:
 list<T> _q;
};

Note that the class now inherits from , that is, monitor.Queue IceUtil::Monitor<IceUtil::Mutex> Queue is-a

Both the and methods lock the monitor when they are called. As for mutexes, instead of calling and directly, we are using the put get lock unlock
 helper which automatically locks the monitor when it is instantiated and unlocks the monitor again when it is destroyed.Lock

The method first locks the monitor and then, now being in sole possession of the critical region, enqueues an item. Before returning (thereby put
unlocking the monitor), calls . The call to will wake up any consumer thread that may be asleep in a call to inform the put notify notify wait
consumer that an item is available.

The method also locks the monitor and then, before attempting to dequeue an item, tests whether the queue is empty. If so, the consumer calls get w
. This suspends the consumer inside the call and unlocks the monitor, so a producer can enter the monitor to enqueue an item. Once that ait wait

happens, the producer calls , which causes the consumer's call to complete, with the monitor again locked for the consumer. The notify wait
consumer now dequeues an item and returns (thereby unlocking the monitor).

For this machinery to work correctly, the implementation of does two things:get

get tests whether the queue is empty acquiring the lock.after
get re-tests the condition in a loop around the call to ; if the queue is still empty after returns, the call is re-entered.wait wait wait

You always write your code to follow the same pattern:must

Never test a condition unless you hold the lock.
Always re-test the condition in a loop around . If the test still shows the wrong outcome, call again.wait wait

Not adhering to these conditions will eventually result in a thread accessing shared data when it is not in its expected state, for the following reasons:

If you test a condition without holding the lock, there is nothing to prevent another thread from entering the monitor and changing its state
before you can acquire the lock. This means that, by the time you get around to locking the monitor, the state of the monitor may no longer
be in agreement with the result of the test.
Some thread implementations suffer from a problem known as : occasionally, more than one thread may wake up in spurious wake-up
response to a call to , or a thread may wake up without any call to at all. As a result, each thread that returns from a call to notify notify w

 must re-test the condition to ensure that the monitor is in its expected state: the fact that returns does indicate that the ait wait not
condition has changed.

Efficient Notification using Monitors in C++
The previous implementation of our unconditionally notifies a waiting reader whenever a writer deposits an item into the queue. If thread-safe queue
no reader is waiting, the notification is lost and does no harm. However, unless there is only a single reader and writer, many notifications will be sent
unnecessarily, causing unwanted overhead.

Here is one way to fix the problem:

Ice 3.4.2 Documentation

4 Copyright © 2017, ZeroC, Inc.

1.
2.
3.
4.
5.

C++

#include <IceUtil/Monitor.h>

template<class T> class Queue : public IceUtil::Monitor<IceUtil::Mutex> {
public:
 void put(const T& item) {
 IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
 _q.push_back(item);
 if (_q.size() == 1)
 notify();
 }

 T get() {
 IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
 while (_q.size() == 0)
 wait();
 T item = _q.front();
 _q.pop_front();
 return item;
 }

private:
 list<T> _q;
};

The only difference between this code and the implementation shown earlier is that a writer calls only if the queue length has just changed notify
from empty to non-empty. That way, unnecessary calls are never made. However, this approach works only for a single reader thread. To notify
see why, consider the following scenario:

Assume that the queue currently contains a number of items and that we have five reader threads.
The five reader threads continue to call until the queue becomes empty and all five readers are waiting in .get get
The scheduler schedules a writer thread. The writer finds the queue empty, deposits an item, and wakes up a single reader thread.
The awakened reader thread dequeues the single item on the queue.
The reader calls a second time, finds the queue empty, and goes to sleep again.get

The net effect of this is that there is a good chance that only one reader thread will ever be active; the other four reader threads end up being
permanently asleep inside the method.get

One way around this problem is call instead of once the queue length exceeds a certain amount, for example:notifyAll notify

Ice 3.4.2 Documentation

5 Copyright © 2017, ZeroC, Inc.

C++

#include <IceUtil/Monitor.h>

template<class T> class Queue : public IceUtil::Monitor<IceUtil::Mutex> {
public:
 void put(const T& item) {
 IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
 _q.push_back(item);
 if (_q.size() >= _wakeupThreshold)
 notifyAll();
 }

 T get() {
 IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
 while (_q.size() == 0)
 wait();
 T item = _q.front();
 _q.pop_front();
 return item;
 }

private:
 list<T> _q;
 const int _wakeupThreshold = 100;
};

Here, we have added a private data member ; a writer wakes up waiting readers once the queue length exceeds the _wakeupThreshold all
threshold, in the expectation that all the readers will consume items more quickly than they are produced, thereby reducing the queue length below
the threshold again.

This approach works, but has drawbacks as well:

The appropriate value of is difficult to determine and sensitive to things such as speed and number of processors and I_wakeupThreshold
/O bandwidth.

If multiple readers are asleep, they are all made runnable by the thread scheduler once a writer calls . On a multiprocessor notifyAll
machine, this may result in all readers running at once (one per CPU). However, as soon as the readers are made runnable, each of them
attempts to reacquire the mutex that protects the monitor before returning from . Of course, only one of the readers actually succeeds wait
and the remaining readers are suspended again, waiting for the mutex to become available. The net result is a large number of thread
context switches as well as repeated and unnecessary locking of the system bus.

A better option than calling is to wake up waiting readers one at a time. To do this, we keep track of the number of waiting readers and notifyAll
call only if a reader needs to be woken up:notify

Ice 3.4.2 Documentation

6 Copyright © 2017, ZeroC, Inc.

1.

C++

#include <IceUtil/Monitor.h>

template<class T> class Queue : public IceUtil::Monitor<IceUtil::Mutex> {
public:
 Queue() : _waitingReaders(0) {}

 void put(const T& item) {
 IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
 _q.push_back(item);
 if (_waitingReaders)
 notify();
 }

 T get() {
 IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
 while (_q.size() == 0) {
 try {
 ++_waitingReaders;
 wait();
 --_waitingReaders;
 } catch (...) {
 --_waitingReaders;
 throw;
 }
 }
 T item = _q.front();
 _q.pop_front();
 return item;
 }

private:
 list<T> _q;
 short _waitingReaders;
};

This implementation uses a member variable to keep track of the number of readers that are suspended. The constructor _waitingReaders
initializes the variable to zero and the implementation of increments and decrements the variable around the call to . Note that these get wait
statements are enclosed in a - block; this ensures that the count of waiting readers remains accurate even if throws an exception. try catch wait
Finally, calls only if there is a waiting reader.put notify

The advantage of this implementation is that it minimizes contention on the monitor mutex: a writer wakes up only a single reader at a time, so we do
not end up with multiple readers simultaneously trying to lock the mutex. Moreover, the monitor implementation signals a waiting thread only notify

 it has unlocked the mutex. This means that, when a thread wakes up from its call to and tries to reacquire the mutex, the mutex is likely to after wait
be unlocked. This results in more efficient operation because acquiring an unlocked mutex is typically very efficient, whereas forcefully putting a
thread to sleep on a locked mutex is expensive (because it forces a thread context switch).

See Also

The C++ Mutex Class
The C++ RecMutex Class
The C++ Time Class

References

Mitchell, J. G., et al. 1979. . CSL-793. Palo Alto, CA: Xerox PARC.Mesa Language Manual

https://doc.zeroc.com/pages/viewpage.action?pageId=5048234
https://doc.zeroc.com/pages/viewpage.action?pageId=5048233
https://doc.zeroc.com/pages/viewpage.action?pageId=5047945

	The C++ Monitor Class

