
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

New Features in Ice 3.4
This page describes significant changes and improvements in Ice 3.4 that may affect the operation of your applications or have an impact on your
source code. For a detailed list of the changes in this release, please refer to the file included in your Ice distribution.CHANGES

On this page:

Changes and fixes in Ice 3.4.2
Supported platforms
Ice Visual Studio Add-in
.NET Compact Framework support
Android support

Changes and fixes in Ice 3.4.1
Underscores allowed in Slice

Interoperability
Name collisions
Freeze

Freeze locking
Miscellaneous changes

Features added with Ice 3.4.0
New API for Asynchronous Method Invocation (AMI)
Better scalability
New Dispatcher facility
Glacier2 utility classes
Default servants
Alternate storage for IceGrid and IceStorm
Connection and endpoint information
New Slice compiler and API for PHP
Slice comments
New Slice syntax for default values
Properties in the Windows registry
New sample programs

Changes and fixes in Ice 3.4.2

Supported platforms

We are adding Red Hat Enterprise Linux 6 (i386 and x86_64) and Amazon Linux 2011.2 (i386 and x86_64) to our list of supported platforms for Ice
3.4.2. Binary RPMs for RHEL 6 are available for ; these RPMs can also be used on Amazon Linux.download

Ice Visual Studio Add-in

We have made many more improvements to our . This release adds support for .NET Compact Framework projects and includes Visual Studio Add-in
several bug fixes and minor enhancements to improve the user experience. Refer to the file included in your Ice distribution for more details.CHANGES

.NET Compact Framework support

Ice for .NET now includes support for the .NET Compact Framework (.NET CF). There are several API differences between .NET and .NET CF that
impact the Ice run time, therefore Ice for .NET must be re-compiled to target .NET CF. The Ice binary distribution for Windows includes the .NET CF
version of the Ice run time in , and the Ice Visual Studio Add-in automatically uses this DLL for Smart Device install-dir\bin\cf\Ice.dll
projects. To build Ice for .NET CF in a source distribution, enable in .COMPACT cs\config\Make.rules.mak.cs

Due to API limitations, the following features are supported in Ice for .NET CF:not

Protocol compression
Signal processing in the classIce.Application
IceSSL
ICE_CONFIG environment variable
Dynamic loading of Slice checksums
Ice.TCP.SndSize and Ice.TCP.RcvSize
Automatic discovery of dependent assemblies containing Slice-generated classes and exceptions

Refer to the for more details.manual

Android support

http://www.zeroc.com/download.html
https://doc.zeroc.com/display/Ice34/Visual+Studio+Add-in
https://doc.zeroc.com/display/Ice34/.NET+Compact+Framework+Support

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

Support for using Ice in Android applications was previously provided as a ZeroC Labs project. This project consisted of source code patches to the
Ice for Java run time that corrected compatibility issues, along with several sample applications that demonstrated the use of Ice in Android.

The source code patches have been incorporated into the Ice mainline for the 3.4.2 release, meaning you can now use the same file to Ice.jar
build both Java and Android applications. The Android sample projects have also been added to the Ice distribution.

Changes and fixes in Ice 3.4.1

Underscores allowed in Slice

Prior versions of Ice did not permit underscores to be used in Slice identifiers. We have eliminated that restriction in Ice 3.4.1 with a new translator
option ().--underscore

Please note that there are several important issues to consider if you plan to incorporate underscores into your Slice definitions:

Interoperability

Renaming an existing Slice definition always raises the possibility of interoperability problems with existing applications. Changing the name of any
Slice definition whose type ID is sent "over the wire" can easily break interoperability unless all applications are rebuilt and redeployed. Adding
underscores to your Slice definitions presents an additional difficulty because the Slice compilers for older versions of Ice will not even be able to
compile your new definitions.

Name collisions

With some effort, it is possible to write legal Slice definitions using underscores that generate name collisions in a language mapping. For example:

Slice

module A
{
 interface B_C { };
};

module A_B
{
 interface C { };
};

The Slice compiler for PHP () uses underscores to separate name scopes in the flattened mapping, therefore both of these interfaces slice2php
generate the same PHP type named .A_B_C

Here is another example:

Ice requires Android 2.1 or later, and Android 2.2 or later is required to use IceSSL.

Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

Slice

module A
{
 interface B
 {
 void op();
 void begin_op();
 };

 struct Callback_B_op
 {
 string s;
 };
};

These Slice definitions cause collisions with generated code that supports asynchronous invocations.

Although these are contrived examples written intentionally to cause errors, they highlight the importance of selecting your Slice identifiers with
careful consideration of your target language mappings.

Freeze

As discussed , renaming Slice types poses a range of compatibility issues. If you use to store instances of Slice types persistently, be above Freeze
aware that renaming Slice types usually requires that you also your Freeze databases because Slice type names are embedded in your migrate
records (if you store instances of Slice classes) and also appear in the Freeze catalog.

Freeze locking

Ice 3.4.0 added a locking mechanism to Freeze to prevent multiple processes from opening the same database environment simultaneously, which
can lead to data corruption. Freeze uses a lock file named , which can be found in the database environment directory.__Freeze/lock

In Ice 3.4.1 we added the property . This property determines whether Freeze attempts to create the lock file Freeze.DbEnv. .LockFileenv-name
for the named database environment. The default value of this property is 1, meaning the lock file is created. Applications should not normally need
to disable the lock file, but it is useful for utility programs such as the tools dumpdb and transformdb. By disabling the lock file, these FreezeScript
tools are able to inspect a database environment that is currently open in another process, regardless of whether that process created a lock file.

If you intend to use a FreezeScript tool on a database environment that is currently open, please be aware that the property Freeze.DbEnv.env-
 must be defined for both the FreezeScript tool as well as the other process that has opened the environment, otherwise the .DbPrivate=0name

database can be corrupted.

Miscellaneous changes

Ice 3.4.1 requires Berkeley DB 4.8.30. This version of Berkeley DB includes a fix for a minor memory leak that was present in earlier
versions.

The shrinking behavior of Ice thread pools changed in Ice 3.4.0 but was not documented. Users of both 3.4.0 and 3.4.1 should review Thread
 for more information.pool changes in Ice 3.4

Features added with Ice 3.4.0

New API for Asynchronous Method Invocation (AMI)

This release features a completely new AMI facility for C++, C#, Java, and Python that allows you to structure your code with much greater flexibility.
To get a better understanding of the motivations for this enhancement and how it can improve your own applications, we encourage you to read our w

 on AMI.hite papers

Better scalability

The Ice run time underwent significant retooling to make use of Windows completion ports and overlapped I/O for its networking operations. As a
result, server applications that handle many connections should see a significant improvement in scalability.

https://doc.zeroc.com/display/Ice34/Freeze
https://doc.zeroc.com/display/Ice34/Migrating+a+Freeze+Database
https://doc.zeroc.com/display/Ice34/Freeze+Properties#FreezeProperties-Freeze.DbEnv.env-name.LockFile
https://doc.zeroc.com/display/Ice34/FreezeScript
https://doc.zeroc.com/display/Ice34/Freeze+Properties#FreezeProperties-Freeze.DbEnv.env-name.DbPrivate
https://doc.zeroc.com/display/Ice34/Freeze+Properties#FreezeProperties-Freeze.DbEnv.env-name.DbPrivate
https://doc.zeroc.com/display/Ice34/Upgrading+your+Application+from+Ice+3.3#UpgradingyourApplicationfromIce3.3-ThreadpoolchangesinIce3.4
https://doc.zeroc.com/display/Ice34/Upgrading+your+Application+from+Ice+3.3#UpgradingyourApplicationfromIce3.3-ThreadpoolchangesinIce3.4
http://www.zeroc.com/articles/index.html
http://www.zeroc.com/articles/index.html

Ice 3.4.2 Documentation

4 Copyright © 2017, ZeroC, Inc.

Additional enhancements were made to improve scalability on all platforms. For example, Ice now establishes an outgoing connection and accepts
an incoming connection in constant time, regardless of the number of connections that have already been established. Furthermore, the Ice thread
pool now supports receiving and sending data using multiple threads, which improves CPU usage on machines with multiple cores.

Our has been updated for Ice 3.4 and shows that the scalability of Ice for C++ on Windows is now on par with the scalability performance white paper
on Linux.

New facilityDispatcher

In previous releases, the developer of a graphical Ice application would need to take precautions to make sure that updates to the user interface were
performed in the proper thread. For example, graphical applications typically use AMI because it does not block the calling thread, but AMI callbacks
are invoked from an Ice run time thread. Since the callback cannot update the user interface directly from such a thread, it is forced to schedule an
update instead. Consequently, the application code grew more complex and was prone to error if the developer neglected the threading rules.

Ice 3.4 introduces the facility that lets you control the thread in which servant methods and AMI callbacks are invoked. It is especially Dispatcher
useful for a graphical application, in which you can easily install a custom dispatcher to guarantee that all of your servant and callback invocations are
made in a thread that can safely update the user interface.

This technique is demonstrated in a sample application for each of the language mappings: refer to the demo in C++, the demo in Java, MFC swing
and the demo in C#.wpf

Glacier2 utility classes

Some effort is required to write an application that correctly manages a session. To simplify this task, we have added in C++, Glacier2 utility classes
C#, Java, and Python that manage the session for you.

For all of these language mappings, Ice includes a new subclass of named that is intended to be Ice::Application Glacier2::Application
used by command-line applications that require a Glacier2 session. The class takes care of establishing the session, keeping it alive, and recovering
from session failures.

In Java and C#, Ice also includes the class for use in graphical applications. This class performs many of the same Glacier2.SessionHelper
tasks as .Glacier2.Application

Default servants

The traditional way of implementing a default servant was to install a that returned the same servant for every request. However, servant locator
since default servants are one of the most common use cases for servant locators, we have made them easier to use by adding new operations to
the interface. If you make use of default servants, you can simplify your code by migrating your application to this .ObjectAdapter new API

Alternate storage for IceGrid and IceStorm

IceStorm and the now have the ability to use a SQL database instead of Freeze for their persistent storage requirements. This IceGrid registry
release supports SQLite on all platforms and PostgreSQL on Unix platforms. If you would like to see support added for other SQL servers, please
contact .info@zeroc.com

Connection and endpoint information

Ice developers frequently want to obtain information about connections and endpoints, as evidenced by the numerous inquiries on the user forum
about this issue. For example, the developer may want to be able to discover the IP address of a remote client. This information was available in prior
releases, but not in a form that was easy to manipulate.

Now it is possible to obtain about connections and endpoints with the addition of the and class more details ConnectionInfo EndpointInfo
hierarchies. Using these classes, you can discover addresses, ports, and other attributes of a connection or endpoint.

Note that it is inadvisable to use such addressing information for authentication purposes, as IP addresses can easily be forged.

New Slice compiler and API for PHP

Significant changes have been made to the PHP mapping and API. For example, Ice for PHP now uses static translation via the new slice2php
compiler, and the language mapping is now more consistent with that of Python and Ruby. For more information on migrating your PHP application,
please refer to .PHP changes in Ice 3.4

Slice comments

http://www.zeroc.com/articles/index.html
https://doc.zeroc.com/display/Ice34/Dispatching+Invocations+to+User+Threads
https://doc.zeroc.com/display/Ice34/Glacier2
https://doc.zeroc.com/display/Ice34/Glacier2+Helper+Classes
https://doc.zeroc.com/display/Ice34/Servant+Locators
https://doc.zeroc.com/display/Ice34/Default+Servants
https://doc.zeroc.com/display/Ice34/Configuring+IceStorm#ConfiguringIceStorm-IceStormDatabaseConfiguration
https://doc.zeroc.com/display/Ice34/IceGrid+Persistent+Data#IceGridPersistentData-sql
mailto:info@zeroc.com
https://doc.zeroc.com/display/Ice34/Using+Connections
https://doc.zeroc.com/display/Ice34/slice2php+Command-Line+Options
https://doc.zeroc.com/display/Ice34/Upgrading+your+Application+from+Ice+3.3#UpgradingyourApplicationfromIce3.3-PHPchangesinIce3.4

Ice 3.4.2 Documentation

5 Copyright © 2017, ZeroC, Inc.

This release offers several improvements that will be appreciated by developers, especially those who use integrated development environments
(IDEs):

The Slice compilers for Java, C#, and Python now preserve Slice comments in the generated code.

Doc comments have been added to the native Ice APIs.

The JAR files for Ice and Freeze include source code to allow IDEs such as Eclipse to browse the Ice source code and to display javadoc
comments.

For C# users that compile generated Slice code into an assembly, it is now useful to instruct Visual C# to emit documentation comments
into an XML file for the assembly containing your compiled Slice definitions. This enables the IDE to display tooltips for your Slice APIs. Ice
generates these XML files for its own assemblies so that you can view tooltips for the Ice APIs as well.

New Slice syntax for default values

It is now possible to specify in Slice the default values for data members of , , and . The semantics are the same as for classes structures exceptions
Slice in that you can only specify default values for a data member whose type is a primitive or enumeration. For example:constants

Slice

enum Color { red, green, blue };

struct Point
{
 int x = -1;
 int y = -1;
 Color c = blue;
};

Properties in the Windows registry

Ice configuration properties can now be loaded from the by specifying a registry key as the value of the property. Ice Windows registry Ice.Config
programs that run as Windows services are likely to make use of this feature because it avoids the need to hard-code properties in the application,
eliminates the dependency on a configuration file, and allows the program's configuration settings to be edited using familiar registry tools.

New sample programs

This release adds the following sample programs:

map_filesystem (C++, Java)
Shows how to implement the using a .file system application Freeze map

interleaved (C++)
Uses interleaved asynchronous invocations to achieve maximum throughput.

plugin (C++, Java, C#)
Demonstrates how to write an Ice .plug-in

chat (Java, C#)
A graphical chat client that uses to communicate with a C++ server.Glacier2

swing (Java) and (C#)wpf
Graphical versions of the client.hello

hello (PHP)
A Glacier2 client that demonstrates the use of .registered communicators

See Also

https://doc.zeroc.com/display/Ice34/Classes
https://doc.zeroc.com/display/Ice34/Structures
https://doc.zeroc.com/display/Ice34/User+Exceptions
https://doc.zeroc.com/display/Ice34/Constants+and+Literals
https://doc.zeroc.com/display/Ice34/Alternate+Property+Stores#AlternatePropertyStores-registry
https://doc.zeroc.com/display/Ice34/Ice+Configuration+Property
https://doc.zeroc.com/display/Ice34/Slice+for+a+Simple+File+System
https://doc.zeroc.com/display/Ice34/Freeze+Maps
https://doc.zeroc.com/display/Ice34/Plug-in+Facility
https://doc.zeroc.com/display/Ice34/Glacier2
https://doc.zeroc.com/display/Ice34/Application+Notes+for+PHP

	New Features in Ice 3.4

