
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Background Save Evictor
Freeze provides two types of evictors. This page describes the background save evictor.

On this page:

Overview of the Background Save Evictor
Creating a Background Save Evictor
The Background Saving Thread
Synchronization Semantics for the Background Save Evictor
Preventing Servant Eviction
Handling Fatal Evictor Errors

Overview of the Background Save Evictor
A background save evictor keeps all its servants in a map and writes the state of newly-created, modified, and deleted servants to disk
asynchronously, in a background thread. You can configure how often servants are saved; for example you could decide to save every three
minutes, or whenever ten or more servants have been modified. For applications with frequent updates, this allows you to group many updates
together to improve performance.

The downside of the background save evictor is recovery from a crash. Because saves are asynchronous, there is no way to force an immediate
save to preserve a critical update. Moreover, you cannot group several related updates together: for example, if you transfer funds between two
accounts (servants) and a crash occurs shortly after this update, it is possible that, once your application comes back up, you will see the update on
one account but not on the other. Your application needs to handle such inconsistencies when restarting after a crash.

Similarly, a background save evictor provides no ordering guarantees for saves. If you update servant 1, servant 2, and then servant 1 again, it is
possible that, after recovering from a crash, you will see the latest state for servant 1, but no updates at all for servant 2.

The background save evictor implements the local interface , which derives from .Freeze::BackgroundSaveEvictor Freeze::Evictor

Creating a Background Save Evictor
You create a background save evictor in C++ with the global function , and in Java with the static Freeze::createBackgroundSaveEvictor
method .Freeze.Util.createBackgroundSaveEvictor

For C++, the signatures are as follows:

C++

BackgroundSaveEvictorPtr
createBackgroundSaveEvictor(
 const ObjectAdapterPtr& adapter,
 const string& envName,
 const string& filename,
 const ServantInitializerPtr& initializer = 0,
 const vector<IndexPtr>& indexes = vector<IndexPtr>(),
 bool createDb = true);

BackgroundSaveEvictorPtr
createBackgroundSaveEvictor(
 const ObjectAdapterPtr& adapter,
 const string& envName,
 DbEnv& dbEnv,
 const string& filename,
 const ServantInitializerPtr& initializer = 0,
 const vector<IndexPtr>& indexes = vector<IndexPtr>(),
 bool createDb = true);

For Java, the method signatures are:

Freeze also provides a , with different persistence semantics. The on-disk format of these two types of evictors is the transactional evictor
same: you can switch from one type of evictor to the other without any data transformation.

https://doc.zeroc.com/display/Ice35/Transactional+Evictor

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Java

public static BackgroundSaveEvictor
createBackgroundSaveEvictor(
 Ice.ObjectAdapter adapter,
 String envName,
 String filename,
 ServantInitializer initializer,
 Index[] indexes,
 boolean createDb);

public static BackgroundSaveEvictor
createBackgroundSaveEvictor(
 Ice.ObjectAdapter adapter,
 String envName,
 com.sleepycat.db.Environment dbEnv,
 String filename,
 ServantInitializer initializer,
 Index[] indexes,
 boolean createDb);

Both C++ and Java provide two overloaded functions: in one case, Freeze opens and manages the underlying Berkeley DB environment; in the other
case, you provide a object that represents a Berkeley DB environment you opened yourself. (Usually, it is easiest to let Freeze take care of all DbEnv
interactions with Berkeley DB.)

The parameter represents the name of the underlying Berkeley DB environment, and is also used as the default Berkeley DB home envName
directory. (See .)Freeze.DbEnv. .DbHomeenv-name

The parameter represents the name of the Berkeley DB database file associated with this evictor. The persistent state of all your servants filename
is stored in this file.

The parameter represents the . It is an optional parameter in C++; in Java, pass if you do not need a servant initializer servant initializer null
initializer.

The parameter is a vector or array of . It is an optional parameter in C++; in Java, pass if your evictor does not define indexes evictor indexes null
an index.

Finally, the parameter tells Freeze what to do when the corresponding Berkeley DB database does not exist. When true, Freeze creates a createDb
new database; when false, Freeze raises a .Freeze::DatabaseException

The Background Saving Thread
All persistence activity of a background save evictor is handled in a background thread created by the evictor. This thread wakes up periodically and
saves the state of all newly-registered, modified, and destroyed servants in the evictor's queue.

For applications that experience bursts of activity that result in a large number of modified servants in a short period of time, you can also configure
the evictor's thread to begin saving as soon as the number of modified servants reaches a certain threshold.

Synchronization Semantics for the Background Save Evictor
When the saving thread takes a snapshot of a servant it is about to save, it is necessary to prevent the application from modifying the servant's
persistent data members at the same time.

The Freeze evictor and the application need to use a common synchronization to ensure correct behavior. In Java, this common synchronization is
the servant itself: the Freeze evictor synchronizes the servant (a Java object) while taking the snapshot. In C++, the servant is required to inherit from
the class : the background save evictor locks the servant through this interface while taking a snapshot. On the IceUtil::AbstractMutex
application side, the servant's implementation is required to use the same mechanism to synchronize all operations that access the servant's Slice-
defined data members.

Preventing Servant Eviction
Occasionally, automatically evicting and reloading all servants can be inefficient. You can remove a servant from the evictor's queue by locking this
servant "in memory" using the or operation on the evictor:keep keepFacet

https://doc.zeroc.com/display/Ice35/Freeze+Properties#FreezeProperties-Freeze.DbEnv.env-name.DbHome
https://doc.zeroc.com/display/Ice35/Freeze+Evictor+Concepts#FreezeEvictorConcepts-UsingaServantInitializer
https://doc.zeroc.com/display/Ice35/Freeze+Evictor+Concepts#FreezeEvictorConcepts-IndexinganEvictorDatabase

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

Slice

local interface BackgroundSaveEvictor extends Evictor {
 void keep(Ice::Identity id);
 void keepFacet(Ice::Identity id, string facet);
 void release(Ice::Identity id);
 void releaseFacet(Ice::Identity id, string facet);
};

keep and are recursive: you need to call or for this servant the same number of times to put it back in the keepFacet release releaseFacet
evictor queue and make it eligible again for eviction.

Servants kept in memory (using or) do not consume a slot in the evictor queue. As a result, the maximum number of servants in keep keepFacet
memory is approximately the number of kept servants plus the evictor size. (It can be larger while you have many evictable objects that are modified
but not yet saved.)

Handling Fatal Evictor Errors
Freeze allows you to register a callback for handling fatal errors encountered by a background save evictor. If no callback is registered, the evictor
aborts the application by default.

Use (Java) or (C++) to register the callback.Freeze.Util.registerFatalErrorCallback Freeze::registerFatalErrorCallback

For C++, accepts a function pointer of type :registerFatalErrorCallback FatalErrorCallback

C++

typedef void (*FatalErrorCallback)(const BackgroundSaveEvictorPtr&, const Ice::CommunicatorPtr&);

In Java, accepts a reference to an object that implements registerFatalErrorCallback :Freeze.FatalErrorCallback

Java

package Freeze;

public interface FatalErrorCallback
{
 void handleError(Evictor evictor, Ice.Communicator communicator, RuntimeException ex);
}

Note that the argument may be .RuntimeException null

See Also

Transactional Evictor
Freeze Evictor Concepts

The application should assume that an evictor will not continue to work properly after encountering a fatal error.

https://doc.zeroc.com/display/Ice35/Transactional+Evictor
https://doc.zeroc.com/display/Ice35/Freeze+Evictor+Concepts

	Background Save Evictor

