
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Resource Allocation using IceGrid Sessions
IceGrid provides a resource allocation facility that coordinates access to the objects and servers of an IceGrid application. To allocate a resource for
exclusive use, a client must first establish a session by authenticating itself with the IceGrid registry or a Glacier2 router, after which the client may
reserve objects and servers that the application indicates are allocatable. The client should release the resource when it is no longer needed,
otherwise IceGrid reclaims it when the client's session terminates or expires due to inactivity.

An allocatable server offers at least one allocatable object. The server is considered to be allocated when its first allocatable object is claimed, and is
not released until all of its allocated objects are released. While the server is allocated by a client, no other clients can allocate its objects.

On this page:

Creating an IceGrid Session
Controlling Access to IceGrid Sessions
Allocating Objects with an IceGrid Session
Allocating Servers with an IceGrid Session
Security Considerations for Allocated Resources
Deploying Allocatable Resources
Using Resource Allocation in the Ripper Application

Creating an IceGrid Session
A client must create an IceGrid session before it can allocate objects. If you have configured a Glacier2 router to use , the IceGrid's session managers
client's satisfies this requirement.router session

In the absence of Glacier2, an IceGrid client invokes or on IceGrid's createSession createSessionFromSecureConnection Registry
interface to create a session:

Slice

module IceGrid {
 exception PermissionDeniedException {
 string reason;
 };

 interface Registry {
 Session* createSession(string userId, string password)
 throws PermissionDeniedException;

 Session* createSessionFromSecureConnection()
 throws PermissionDeniedException;

 idempotent int getSessionTimeout();
 };
};

The operation expects a username and password and returns a session proxy if the client is allowed to create a session. By createSession
default, IceGrid does not allow the creation of sessions. You must define the registry property with IceGrid.Registry.PermissionsVerifier
the proxy of a permissions verifier object to with .enable session creation createSession

The operation does not require a username and password because it uses the credentials supplied by createSessionFromSecureConnection
an connection to authenticate the client. As with , you must by configuring the proxy of a permissions SSL createSession enable session creation
verifier object so that clients can use to create a session. In this case, the property is createSessionFromSecureConnection IceGrid.

.Registry.SSLPermissionsVerifier

To create a session, the client obtains the registry proxy by converting the well-known proxy string to a proxy object with the "IceGrid/Registry"
communicator, downcasts the proxy to the interface, and invokes on one of the operations. The sample code below IceGrid::Registry
demonstrates how to do it in C++; the code will look very similar in other language mappings.

https://doc.zeroc.com/display/Ice34/Glacier2+Integration+with+IceGrid
https://doc.zeroc.com/display/Ice34/Getting+Started+with+Glacier2#GettingStartedwithGlacier2-CreatingaGlacier2Session
https://doc.zeroc.com/display/Ice34/IceSSL

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

C++

Ice::ObjectPrx base = communicator->stringToProxy("IceGrid/Registry");
IceGrid::RegistryPrx registry = IceGrid::RegistryPrx::checkedCast(base);
string username = ...;
string password = ...;
IceGrid::SessionPrx session;
try {
 session = registry->createSession(username, password);
} catch (const IceGrid::PermissionDeniedException & ex) {
 cout << "permission denied:\n" << ex.reason << endl;
}

After creating the session, the client must keep it alive by periodically invoking its operation. The session expires if the client does not keepAlive
invoke within the configured timeout period, which can be obtained by calling the operation on the keepAlive getSessionTimeout Registry
interface.

If a session times out, or if the client explicitly terminates the session by invoking its operation, IceGrid automatically releases all objects destroy
allocated using that session.

Controlling Access to IceGrid Sessions
As described above, you must configure the IceGrid registry with the proxy of at least one permissions verifier object to enable session creation:

IceGrid.Registry.PermissionsVerifier
This property supplies the proxy of an object that implements the interface . Defining this property Glacier2::PermissionsVerifier
allows clients to create sessions using .createSession

IceGrid.Registry.SSLPermissionsVerifier
This property supplies the proxy of an object that implements the interface . Defining this Glacier2::SSLPermissionsVerifier
property allows clients to create sessions using .createSessionFromSecureConnection

IceGrid supplies built-in permissions verifier objects:

A null permissions verifier for TCP/IP. This object accepts any username and password and should only be used in a secure environment
where no access control is necessary. You select this verifier object by defining the following configuration property:

IceGrid.Registry.PermissionsVerifier=<instance-name>/NullPermissionsVerifier

Note that you have to substitute the correct for the object identity category.instance name

A null permissions verifier for SSL, analogous to the one for TCP/IP. You select this verifier object by defining the following configuration
property:

IceGrid.Registry.SSLPermissionsVerifier=<instance-name>/NullSSLPermissionsVerifier

A file-based permissions verifier. This object uses an access control list in a file that contains username-password pairs. The format of the
password file is the same as the format of . You enable this verifier implementation by defining the configuration Glacier2 password files
property with the pathname of the password file. Note that this property is ignored if you specify IceGrid.Registry.CryptPasswords
the proxy of a permissions verifier object using .IceGrid.Registry.PermissionsVerifier

You can also .implement your own permissions verifier object

Allocating Objects with an IceGrid Session
A client allocates objects using the session proxy returned from or . The proxy createSession createSessionFromSecureConnection
supports the interface shown below:Session

The may change based on its configuration settings.identity of the registry object

https://doc.zeroc.com/display/Ice34/IceGrid+Properties#IceGridProperties-IceGrid.Registry.PermissionsVerifier
https://doc.zeroc.com/display/Ice34/IceGrid+Properties#IceGridProperties-IceGrid.Registry.SSLPermissionsVerifier
https://doc.zeroc.com/display/Ice34/Well-Known+Registry+Objects
https://doc.zeroc.com/display/Ice34/Getting+Started+with+Glacier2#GettingStartedwithGlacier2-WritingaPasswordFile
https://doc.zeroc.com/display/Ice34/IceGrid+Properties#IceGridProperties-IceGrid.Registry.CryptPasswords
https://doc.zeroc.com/display/Ice34/Securing+a+Glacier2+Router#SecuringaGlacier2Router-Glacier2AccessControl
https://doc.zeroc.com/display/Ice34/Well-Known+Registry+Objects

Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

Slice

module IceGrid {
 exception ObjectNotRegisteredException {
 Ice::Identity id;
 };

 exception AllocationException {
 string reason;
 };

 exception AllocationTimeoutException
 extends AllocationException {
 };

 interface Session extends Glacier2::Session {

 idempotent void keepAlive();

 Object* allocateObjectById(Ice::Identity id)
 throws ObjectNotRegisteredException,
 AllocationException;

 Object* allocateObjectByType(string type)
 throws AllocationException;

 void releaseObject(Ice::Identity id)
 throws ObjectNotRegisteredException,
 AllocationException;

 idempotent void setAllocationTimeout(int timeout);
 };
};

The client is responsible for keeping the session alive by periodically invoking , as discussed .keepAlive earlier

The operation allocates and returns the proxy for the allocatable object with the given identity. If no allocatable object with allocateObjectById
the given identity is registered, the client receives . If the object cannot be allocated, the client receives ObjectNotRegisteredException Alloca

. An allocation attempt can fail for the following reasons:tionException

the object is already allocated by the session
the object is allocated by another session and did not become available during the configured allocation timeout period
the session was destroyed.

The operation allocates and returns a proxy for an allocatable object registered with the given type. If more than one allocateObjectByType
allocatable object is registered with the given type, the registry selects one at random. The client receives if no objects with AllocationException
the given type could be allocated. An allocation attempt can fail for the following reasons:

no objects are registered with the given type
all objects with the given type are already allocated (either by this session or other sessions) and none became available during the
configured allocation timeout period
the session was destroyed.

The operation releases an object allocated by the session. The client receives if no releaseObject ObjectNotRegisteredException
allocatable object is registered with the given identity and if the object is not allocated by the session. Upon session AllocationException
destruction, IceGrid automatically releases all allocated objects.

The operation configures the timeout used by the allocation operations. If no allocatable objects are available when the setAllocationTimeout
client invokes or , IceGrid waits for the specified timeout period for an allocatable object to allocateObjectById allocateObjectByType
become available. If the timeout expires, the client receives .AllocationTimeoutException

Allocating Servers with an IceGrid Session
A client does not need to explicitly allocate a server. If a server is allocatable, IceGrid implicitly allocates it to the first client that claims one of the
server's allocatable objects. Likewise, IceGrid releases the server when all of its allocatable objects are released.

Ice 3.4.2 Documentation

4 Copyright © 2017, ZeroC, Inc.

Server allocation is useful in two situations:

Only allocatable servers can use the activation mode, in which the server is activated on demand when allocated by a client and session
deactivated upon release.
An allocatable server can be secured with IceSSL or Glacier2 so that its objects can only be invoked by the client that allocated it.

Security Considerations for Allocated Resources
IceGrid's resource allocation facility allows clients to coordinate access to objects and servers but does not place any restrictions on client invocations
to allocated objects; any client that has a proxy for an allocated object could conceivably invoke an operation on it. IceGrid assumes that clients are
cooperating with each other and respecting allocation semantics.

To prevent unauthorized clients from invoking operations on an allocated object or server, you can use or :IceSSL Glacier2

Using IceSSL, you can secure access to a server or a particular object adapter with the properties or IceSSL.TrustOnly.Server IceSSL
. For example, if you configure a server with the session activation mode, you can set one of the .TrustOnly.Server.AdapterName Ice

 properties to the variable, which is substituted with the session ID when the server is activated for the SSL.TrustOnly ${session.id}
session. If the IceGrid session was created from a secure connection, the session ID will be the distinguished name associated with the
secure connection, which effectively restricts access to the server or one of its adapters to the client that established the session with
IceGrid.

With Glacier2, you can secure access to an allocated object or the object adapters of an allocated server with the Glacier2 filtering
. By default, IceGrid sessions created with a Glacier2 router are given access to allocated objects, allocatable mechanism automatically

objects, certain well-known objects, and the object adapters of allocated servers.

Deploying Allocatable Resources
Allocatable objects are registered using a descriptor that is similar to . Allocatable objects cannot be replicated and well-known object descriptors
therefore can only be specified within an object adapter descriptor.

Servers can be specified as allocatable by setting the server descriptor's attribute.allocatable

As an example, the following application defines an allocatable server and an :allocatable object

XML

<icegrid>
 <application name="Ripper">
 <node name="Node1">
 <server id="EncoderServer"
 exe="/opt/ripper/bin/server"
 activation="on-demand"
 allocatable="true">
 <adapter name="EncoderAdapter" id="EncoderAdapter" endpoints="tcp">
 <allocatable identity="EncoderFactory" type="::Ripper::MP3EncoderFactory"/>
 </adapter>
 </server>
 </node>
 </application>
</icegrid>

Using Resource Allocation in the Ripper Application
We can use the allocation facility in our MP3 encoder factory to coordinate access to the MP3 encoder factories. First we need to modify the
descriptors to define an allocatable object:

https://doc.zeroc.com/display/Ice34/IceSSL
https://doc.zeroc.com/display/Ice34/Glacier2
https://doc.zeroc.com/display/Ice34/IceSSL+Properties#IceSSLProperties-IceSSL.TrustOnly.Server
https://doc.zeroc.com/display/Ice34/IceSSL+Properties#IceSSLProperties-IceSSL.TrustOnly.Server.AdapterName
https://doc.zeroc.com/display/Ice34/IceSSL+Properties#IceSSLProperties-IceSSL.TrustOnly.Server.AdapterName
https://doc.zeroc.com/display/Ice34/Securing+a+Glacier2+Router#SecuringaGlacier2Router-RequestFiltering
https://doc.zeroc.com/display/Ice34/Securing+a+Glacier2+Router#SecuringaGlacier2Router-RequestFiltering
https://doc.zeroc.com/display/Ice34/Glacier2+Integration+with+IceGrid
https://doc.zeroc.com/display/Ice34/Object+Descriptor+Element
https://doc.zeroc.com/display/Ice34/Allocatable+Descriptor+Element

Ice 3.4.2 Documentation

5 Copyright © 2017, ZeroC, Inc.

XML

<icegrid>
 <application name="Ripper">
 <server-template id="EncoderServerTemplate">
 <parameter name="index"/>
 <server id="EncoderServer${index}"
 exe="/opt/ripper/bin/server"
 activation="on-demand">
 <adapter name="EncoderAdapter" endpoints="tcp">
 <allocatable identity="EncoderFactory${index}"
 type="::Ripper::MP3EncoderFactory"/>
 </adapter>
 </server>
 </server-template>
 <node name="Node1">
 <server-instance template="EncoderServerTemplate" index="1"/>
 </node>
 <node name="Node2">
 <server-instance template="EncoderServerTemplate" index="2"/>
 </node>
 </application>
</icegrid>

Next, the client needs to create a session and allocate a factory:

C++

Ice::ObjectPrx obj = session->allocateObjectByType(Ripper::MP3EncoderFactory::ice_staticId());
try {
 Ripper::MP3EncoderPrx encoder = factory->createEncoder();
 // Use the encoder to encode a file ...
}
catch (const Ice::LocalException & ex) {
 // There was a problem with the encoding, we catch the
 // exception to make sure we release the factory.
}
session->releaseObject(obj->ice_getIdentity());

It is important to release an allocated object when it is no longer needed so that other clients may use it. If you forget to release an object, it remains
allocated until the session is destroyed.

See Also

Getting Started with Glacier2
IceSSL
Well-Known Registry Objects
Securing a Glacier2 Router
Object Descriptor Element
Allocatable Descriptor Element
IceGrid Properties
IceSSL Properties

https://doc.zeroc.com/display/Ice34/Getting+Started+with+Glacier2
https://doc.zeroc.com/display/Ice34/IceSSL
https://doc.zeroc.com/display/Ice34/Well-Known+Registry+Objects
https://doc.zeroc.com/display/Ice34/Securing+a+Glacier2+Router
https://doc.zeroc.com/display/Ice34/Object+Descriptor+Element
https://doc.zeroc.com/display/Ice34/Allocatable+Descriptor+Element
https://doc.zeroc.com/display/Ice34/IceGrid+Properties
https://doc.zeroc.com/display/Ice34/IceSSL+Properties

	Resource Allocation using IceGrid Sessions

