Ice 3.5.1 Documentation

Upgrading your Application from Ice 3.3

In addition to the information provided in Upgrading your Application from Ice 3.4, users who are upgrading from Ice 3.3 should also review this page.

On this page:

® Backward compatibility of Ice versions
© Source-code compatibility
Binary compatibility
On-the-wire compatibility
Database compatibility
Interface compatibility
" |ceGrid
" |ceStorm
® Java language mapping changes in Ice 3.4
© Metadata
O Dictionaries
© Request Contexts
© Enumerations
® Changes to the Java API for Freeze maps in Ice 3.4
O General changes to Freeze maps in Java
© Enhancements to Freeze maps in Java
© Backward compatibility for Freeze maps in Java
© Finalizers in Freeze
® Freeze packaging changes in Ice 3.4
® PHP changesinIce 3.4
O Static translation in PHP
Deploying a PHP application
Using communicators in PHP
Using registered communicators in PHP
PHP configuration
PHP namespaces
Run-time exceptions in PHP
Downcasting in PHP
© Other API changes for PHP
Thread pool changes in Ice 3.4
IceSSL changes in Ice 3.4
Migrating IceStorm and IceGrid databases from Ice 3.3
Migrating Freeze databases from Ice 3.3
Removed APIs in Ice 3.4.0
Deprecated APIs in Ice 3.4.0

[e]
[e]
[e]
[e]

O O 0 O O O O

Backward compatibility of Ice versions

A discussion of backward compatibility in Ice involves many factors.

Source-code compatibility

Ice maintains source-code compatibility between a patch release (e.g., 3.4.2) and the most recent minor release (e.g., 3.4.0), but does not guarantee
source-code compatibility between minor releases (e.g., between 3.4 and 3.5).

The subsections below describe the significant API changes in this release that may impact source-code compatibility. Furthermore, the subsections
Removed APIs in Ice 3.4.0 and Deprecated APIs in Ice 3.4.0 summarize additional changes to Ice APIs that could affect your application.

Binary compatibility

As for source-code compatibility, Ice maintains backward binary compatibility between a patch release and the most recent minor release, but does
not guarantee binary compatibility between minor releases.

The requirements for upgrading depend on the language mapping used by your application:
® For statically-typed languages (C++, Java, .NET), the application must be recompiled.
® For scripting languages that use static translation, your Slice files must be recompiled.

® No action is necessary for a Python or Ruby script that loads its Slice files dynamically.

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Upgrading+your+Application+from+Ice+3.4

Ice 3.5.1 Documentation

On-the-wire compatibility

Ice always maintains protocol (“on the wire") compatibility with prior releases. A client using Ice version x can communicate with a server using Ice
version y and vice versa.

Several features introduced in Ice 3.5 require a new version of the Ice encoding, encoding version 1.1. Older versions of Ice do not understand this

encoding: you need to use Ice encoding version 1.0 for communications between clients or servers using Ice 3.5 and clients and servers using older
Ice versions. See Encoding Version 1.1 for details.

Database compatibility

Upgrading to a new minor release of Ice often includes an upgrade to the supported version of Berkeley DB. In turn, this may require an application
to migrate its databases, either because the format of Berkeley DB's database files has changed, or due to a change in the schema of the data stored
in those databases.

For example, if your application uses Freeze, it may be necessary for you to migrate your databases even if your schema has not changed.

Certain Ice services also use Freeze in their implementation. If your application uses these services (IceGrid and IceStorm), it may be necessary for
you to migrate their databases as well.

Please refer to the relevant subsections below for migration instructions.

Interface compatibility

Although Ice always maintains compatibility at the protocol level, changing Slice definitions can also lead to incompatibilities. As a result, Ice
maintains interface compatibility between a patch release and the most recent minor release, but does not guarantee compatibility between minor
releases.

This issue is particularly relevant if your application uses Ice services such as IceGrid or IceStorm, as a change to an interface in one of these
services may adversely affect your application.

Interface changes in an Ice service can also impact compatibility with its administrative tools, which means it may not be possible to administer an Ice
3.4.x service using a tool from a previous minor release (or vice-versa).

IceGrid

Starting with Ice 3.2.0, IceGrid registries and nodes are interface-compatible. For example, you can use an IceGrid node from Ice 3.2 with a registry
from Ice 3.4.

IceGrid registry replication is only supported between registries using Ice 3.3 or later.
An IceGrid node using Ice 3.3 or later is able to activate a server that uses Ice 3.2. The reverse is also true: an IceGrid node from Ice 3.2 is able to

activate a server built with Ice 3.3 or later, but only if the server's configuration properties do not rely on features added after Ice 3.2 (such as the
ability to escape characters in property names and values).

IceStorm

Topic linking is supported between all IceStorm versions released after 3.0.0.

Java language mapping changes in Ice 3.4

The Java2 language mapping, which was deprecated in Ice 3.3, is no longer supported. The Slice compiler and Ice APl now use the Java5 language
mapping exclusively, therefore upgrading to Ice 3.4 may require modifications to your application's source code. The subsections below discuss the
language mapping features that are affected by this change and describe how to modify your application accordingly.

Metadata

The global metadata directives j ava: j ava2 and j ava: j ava5 are no longer supported and should be removed from your Slice files. The Slice
compiler now emits a warning about these directives.

Support for the portable metadata syntax has also been removed. This syntax allowed Slice definitions to define custom type metadata that the Slice
compiler would translate to match the desired target mapping. For example:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Doc/Encoding+Version+1.1

Ice 3.5.1 Documentation

Slice

["java:type: {java.util.ArrayList}"] sequence<String> StringlList;

The braces surrounding the custom type j ava. uti |l . ArrayLi st directed the Slice compiler to use j ava. util . ArrayLi st <String>in the
Javab mapping and j ava. util . ArraylLi st in the Java2 mapping.

All uses of the portable metadata syntax must be changed to use the corresponding Java5 equivalent.

Dictionaries

Now that Slice dictionary types use the Java5 mapping, recompiling your Slice files and your application may cause the Java compiler to emit
"unchecked" warnings. This occurs when your code attempts to assign an untyped collection class such as j ava. uti | . Map to a generic type such
asjava. util.Map<String, String>. Consider the following example:

Slice

di ctionary<string, int> Val ueMap;
interface Table

{
voi d set Val ues(Val ueMap m;

3

A Java2 application might have used these Slice definitions as shown below:

Java

java.util.Map values = new java.util.HashMap();
val ues. put(...);

Tabl ePrx proxy = ...;
proxy. set Val ues(val ues); // Warning

The call to set Val ues is an example of an unchecked conversion. We recommend that you compile your application using the compiler option
shown below:

javac -Xlint:unchecked ...

This option causes the compiler to generate descriptive warnings about occurrences of unchecked conversions to help you find and correct the
offending code.

Request Contexts

The Slice type for request contexts, | ce: : Cont ext , is defined as follows:

Slice

nodul e I ce

{

dictionary<string, string> Context;

1

As a dictionary, the Cont ext type is subject to the same issues regarding unchecked conversions described for #Dictionaries. For example, each
proxy operation maps to two overloaded methods, one that omits the trailing Cont ext parameter and one that includes it:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Request+Contexts

Ice 3.5.1 Documentation

Java

interface Tabl ePrx

{
voi d setValues(java.util.Map<String, Integer> m; // No context
voi d setVal ues(java.util.Map<String, Integer> m
java.util.Map<String, String> ctx);
}

If your proxy invocations make use of this parameter, you will need to change your code to use the generic type shown above in order to eliminate
unchecked conversion warnings.

Enumerations

The Java2 language mapping for a Slice enumeration generated a class whose API differed in several ways from the standard Java5 enum type.
Consider the following enumeration:

Slice

enum Col or { red, green, blue };

The Java2 language mapping for Col or is shown below:

Java

public final class Col or

{
/'l Integer constants
public static final int _red = 0;
public static final int _green = 1;
public static final int _blue = 2;
/'l Enumerators
public static final Color red = ...;
public static final Color green = ...;
public static final Color blue = ...;
/1 Hel pers
public static Color convert(int val);
public static Color convert(String val);
public int value();

}

The first step in migrating to the Java5 mapping for enumerations is to modify all swi t ch statements that use an enumerator. Before Java added
native support for enumerations, the swi t ch statement could only use the integer value of the enumerator and therefore the Java2 mapping supplied
integer constants for use in case statements. For example, here is a swi t ch statement that uses the Java2 mapping:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

Java

Color col = ...;
swi tch(col . val ue())

{

case Color. _red:

br eak;
case Col or._green:

br eak;
case Col or. _bl ue:

br eak;

The Java5 mapping eliminates the integer constants because Java5 allows enumerators to be used in case statements. The resulting code becomes
much easier to read and write:

Java

Color col = ...;
switch(col)

{

case red:

br eak;
case green:

br eak;
case bl ue:

br eak;

The next step is to replace any uses of the val ue or conver t methods with their Java5 equivalents. The base class for all Java5 enumerations (j av
a. | ang. Enum) supplies methods with similar functionality:

Java

static Color[] values() /1 replaces convert(int)
static Color valueO(String val) // replaces convert(String)
int ordinal () /1 replaces val ue()

For example, here is the Java5 code to convert an integer into its equivalent enumerator:

Java

Color r = Color.values()[0]; // red

Note however that the convert (St ri ng) method in the Java2 mapping returned null for an invalid argument, whereas the Java5 enum method val
ueX (String) raises | || egal Argunent Except i on instead.

Refer to the manual for more details on the mapping for enumerations.

Changes to the Java API for Freeze maps in Ice 3.4

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Java+Mapping+for+Enumerations

Ice 3.5.1 Documentation

The Java API for Freeze maps has been revised to used Java5 generic types and enhanced to provide additional functionality. This section describes
these changes in detail and explains how to migrate your Freeze application to the APl in Ice 3.4.

General changes to Freeze maps in Java

The Freeze API is now entirely type-safe, which means compiling your application against Ice 3.4 is likely to generate unchecked conversion
warnings. The generated class for a Freeze map now implements the j ava. uti | . Sort edMap<K, V> interface, where K is the key type and V is the
value type. As a result, applications that relied on the untyped Sor t edMap API (where all keys and values were treated as instances of j ava. | ang.
bj ect) will encounter compiler warnings in Ice 3.4.

For example, an application might have iterated over the entries in a map as follows:

Java

/1 ad APl

bj ect key = new I nteger(5);

bj ect value = new Address(...);

nyMap. put (key, val ue);

java.util.lterator i = nyMap.entrySet().iterator();

while (i.hasNext())
{

java.util.Map.Entry e = (java.util.Map.Entry)i.next();
I nteger nyKey = (Integer)e.getKey();
Address nmyVal ue = (Address)e. getVal ue();

This code will continue to work, but the new API is both type-safe and self-documenting:

Java

/1 New API
int key = b5;
Address val ue = new Address(...);
nyMap. put (key, value); // The key is autoboxed to Integer.
for (java.util.Map. Entry<integer, Address> e : nyMap.entrySet())
{
I nteger nyKey = e.getKey();
Address nyVal ue = e. getValue();

Although migrating to the new APl may require some effort, the benefits are worthwhile because your code will be easier to read and less prone to
defects. You can also take advantage of the "autoboxing” features in Java5 that automatically convert values of primitive types (such as i nt) into
their object equivalents (such as | nt eger).

Please refer to the manual for complete details on the new API.

Enhancements to Freeze maps in Java

Javaé introduced the j ava. uti | . Navi gabl eMap interface, which extends j ava. uti | . Sort edVap to add some useful new methods. Although
the Freeze map API cannot implement j ava. uti | . Navi gabl eMap directly because Freeze must remain compatible with Java5, we have added
the Freeze. Navi gabl eMap interface to provide much of the same functionality. A generated Freeze map class implements Navi gabl eMap, as do
the sub map views returned by map methods such as headMap. The Navi gabl eMap interface is described in the manual, and you can also refer to
the Java6 API documentation.

Backward compatibility for Freeze maps in Java

The Freeze Map API related to indices underwent some significant changes in order to improve type safety and avoid unchecked conversion
warnings. These changes may cause compilation failures in a Freeze application.

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Freeze+Maps
https://doc.zeroc.com/display/Ice35/Using+a+Freeze+Map+in+Java#UsingaFreezeMapinJava-map
https://doc.zeroc.com/display/Ice35/Using+a+Freeze+Map+in+Java#UsingaFreezeMapinJava-map

Ice 3.5.1 Documentation

In the previous API, index comparator objects were supplied to the Freeze map constructor in a map (in Java5 syntax, this comparators map would
have the type j ava. util . Map<String, java.util. Conparator>)in which the index name was the key. As part of our efforts to improve type
safety, we also wanted to use the fully-specified type for each index comparator (such as j ava. uti | . Conpar at or <I nt eger >). However, given
that each index could potentially use a different key type, it is not possible to retain the previous APl while remaining type-safe.

Consequently, the index comparators are now supplied as data members of a static nested class of the Freeze map named | ndexConpar at or s. If
your application supplied custom comparators for indices, you will need to revise your code to use | ndexConpar at or s instead. For example:

Java

/1 Ad API

java.util.Map i ndexConparators = new java.util.HashMap();
i ndexConpar ators. put ("i ndex", new MyConparator());

M/Map map = new MyMap(..., indexConparators);

/1 New API
M/Map. | ndexConpar at ors i ndexConpar ators = new MyMap. | ndexConpar at ors() ;

i ndexConpar at or s. val ueConpar at or = new MyConparator();
M/Map map = new MyMap(..., indexConparators);

We also encourage you to modify the definition of your comparator classes to use the Java5 syntax, as shown in the example below:

Java

// Ad conparator
class IntConparator inplenments java.util.Conparator

{
public int conpare(Cbject ol, Cbject 02)
{
return ((Integer)ol). conpareTo(02);
}
}

/1 New conpar at or
class IntConparator inplenments java.util.Conpar ator<I nteger>

{
public int conpare(lnteger i1, Integer i2)
{
return i l. conpareTo(i2);
}
}

The second API change that might cause compilation failures is the removal of the following methods:

Java

java.util. SortedMap headMapFor | ndex(String nane, Object key);
java.util.SortedMap tail MapForlndex(String name, Object key);

java.util. SortedMap subMapFor | ndex(String nane, Object from Object to);
java. util. SortedMap nmapForl ndex(String name);

Again, this API cannot be retained in a type-safe fashion, therefore sl i ce2f r eezej now generates equivalent (and type-safe) methods for each
index in the Freeze map class.

Please refer to the manual for complete details on the new API.

Finalizers in Freeze

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Using+a+Freeze+Map+in+Java#UsingaFreezeMapinJava-indices

Ice 3.5.1 Documentation

In previous releases, Freeze for Java used finalizers to close objects such as maps and connections that the application neglected to close. Most of
these finalizers have been removed in Ice 3.4, and the only remaining finalizers simply log warning messages to alert you to the fact that connections
and iterators are not being closed explicitly. Note that, given the uncertain nature of Java finalizers, it is quite likely that the remaining finalizers will
not be executed.

Freeze packaging changes in Ice 3.4

All Freeze-related classes are now stored in a separate JAR file named Fr eeze. j ar . As a result, you may need to update your build scripts,
deployment configuration, and run-time environment to include this additional JAR file.

PHP changes in Ice 3.4

The Ice extension for PHP has undergone many changes in this release. The subsections below describe these changes in detail. Refer to the PHP
Mapping for more information about the language mapping.

Static translation in PHP

In prior releases, Slice files were deployed with the application and loaded at Web server startup by the Ice extension. Before each page request, the
extension directed the PHP interpreter to parse the code that was generated from the Slice definitions.

In this release, Slice files must be translated using the new compiler sl i ce2php. This change offers several advantages:
* Applications may have more opportunities to improve performance through the use of opcode caching.

® [tis no longer necessary to restart the Web server when you make changes to your Slice definitions, which is especially useful during
development.

® Errors in your Slice files can now be discovered in your development environment, rather than waiting until the Web server reports a failure
and then reviewing the server log to determine the problem.

* The development process becomes simpler because you can easily examine the generated code if you have questions about the API or
language mapping rules.

® PHP scripts can now use all of the Ice local exceptions. In prior releases, only a subset of the local exception types were available, and all
others were mapped to | ce_UnknownLocal Except i on. See the section Run-time exceptions in PHP below for more information.

All of the Slice files for Ice and Ice services are translated during an Ice build and available for inclusion in your application. At a minimum, you must
include the file | ce. php:

PHP

require 'lce.php';

| ce. php contains definitions for core Ice types and includes a minimal set of generated files. To use an Ice service such as IceStorm, include the
appropriate generated file:

PHP

require 'lce.php';
require 'lceStorm | ceStorm php';

Deploying a PHP application

With the transition to static code generation, you no longer need to deploy Slice files with your application. Instead, you will need to deploy the PHP
code generated from your Slice definitions, along with | ce. php, the generated code for the Ice core, and the generated code for any Ice services
your application might use.

Using communicators in PHP

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/PHP+Mapping
https://doc.zeroc.com/display/Ice35/PHP+Mapping
https://doc.zeroc.com/display/Ice35/slice2php+Command-Line+Options
https://doc.zeroc.com/display/Ice35/IceStorm

Ice 3.5.1 Documentation

In prior releases, each PHP page request could access a single Ice communicator via the $I CE global variable. The configuration of this
communicator was derived from the profile that the script loaded via the | ce_| oadPr of i | e function. The communicator was created on demand
when $I CE was first used and destroyed automatically at the end of the page request.

In this release, a PHP script must create its own communicator using an API that is similar to other Ice language mappings:

PHP

function lce_initialize()

function lce_initialize($args)

function lce_initialize($initData)
function lce_initialize($args, $initData)

Ice_initialize creates a new communicator using the configuration provided in the optional arguments. $ar gs is an array of strings representing
command-line options, and $i ni t Dat a is an instance of | ce_I ni ti al i zati onDat a.

An application that requires no configuration can initialize a communicator as follows:

PHP

$communi cator = lce_initialize();

More elaborate configuration scenarios are described in the section #PHP configuration below.

A script may optionally destroy its communicator:

PHP

$communi cat or - >destroy();

At the completion of a page request, Ice by default automatically destroys any communicator that was not explicitly destroyed.

Using registered communicators in PHP

PHP applications may benefit from the ability to use a communicator instance in multiple page requests. Reusing a communicator allows the
application to minimize the overhead associated with the communicator lifecycle, including such activities as opening and closing connections to Ice
servers.

This release includes new APIs for registering a communicator in order to prevent Ice from destroying it automatically at the completion of a page
request. For example, a session-based application can create a communicator, establish a Glacier2 session, and register the communicator. In
subsequent page requests, the PHP session can retrieve its communicator instance and continue using the Glacier2 session.

The manual provides more information on this feature, and a new sample program can be found in G aci er 2/ hel | o.

PHP configuration
Prior releases supported four INI settings in PHP's configuration file:

ice.config
ice.options
ice.profiles
ice.slice

Thei ce. sl i ce directive is no longer supported since Slice definitions are now compiled statically. The remaining options are still supported but
their semantics are slightly different. They no longer represent the configuration of a communicator; instead, they define property sets that a script
can retrieve and use to initialize a communicator.

The global INI directives i ce. confi g andi ce. opti ons configure the default property set. The i ce. profi | es directive can optionally nominate a
separate file that defines any number of named profiles, each of which configures a property set.

As before, the profiles use an INI file syntax:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Glacier2
https://doc.zeroc.com/display/Ice35/Application+Notes+for+PHP#ApplicationNotesforPHP-registered

Ice 3.5.1 Documentation

[Nanel]
config=filel
options="--Ice. Trace. Network=2 ...

[Narme2]
config=file2
options="--lce. Trace. Locator=1 ...

A new directive, i ce. hi de_profi | es, overwrites the value of the i ce. profi | es directive as a security measure. This directive has a default
value of 1, meaning it is enabled by default.

A script can obtain a property set using the new function | ce_get Pr operti es. Called without an argument (or with an empty string), the function
returns the default property set:

PHP

$props = lce_getProperties();

Alternatively, you can pass the name of the desired profile:

PHP

$props = I ce_getProperties("Nanmel");

The returned object is an instance of | ce_Properti es, which supports the standard Ice API.

For users migrating from an earlier release, you can replace a call to | ce_| oadPr of i | e as follows:

PHP

/1 PHP - Od APl
Ice_l oadProfil e(' Namel');

/1 PHP - New API

$initData = new Ice_lnitializationData;

$i ni tData->properties = Ice_getProperties(' Namel');
$ICE = Ice_initialize($initData);

(Note that it is not necessary to use the symbol $I CE for your communicator. However, using this symbol may ease your migration to this release.)

I ce_l oadPr of i | e also installed the PHP definitions corresponding to your Slice types. In this release you will need to add r equi r e statements to
include your generated code.

Finally, if you wish to manually configure a communicator, you can create a property set using | ce_cr eat eProperti es:

PHP

function lce_createProperties($args=null, $defaultProperties=null)

$ar gs is an array of strings representing command-line options, and $def aul t Pr oper ti es is an instance of | ce_Pr operti es that supplies
default values for properties.

As an example, an application can configure a communicator as shown below:

Copyright © 2017, ZeroC, Inc.

11

Ice 3.5.1 Documentation

PHP

$initData = new Ice_lnitializationData;
$i ni t Data- >properties = lce_createProperties();
$i ni t Dat a- >properti es->set Property("lce. Trace. Network", "1");

$ICE = Ice_initialize($initData);

PHP namespaces

This release includes optional support for PHP namespaces, which was introduced in PHP 5.3. Support for PHP namespaces is disabled by default;
to enable it, you must build the Ice extension from source code with USE_NAMESPACES=yes (see Make. r ul es or Make. r ul es. mak in the php

/ confi g subdirectory). Note that the extension only supports one mapping style at a time; installing a namespace-enabled version of the extension
requires all Ice applications on the target Web server to use namespaces.

With namespace support enabled, you must modify your script to include a different version of the core Ice types:

PHP

require 'lce_ns.php'; // Nanespace version of Ice.php

You must also recompile your Slice files using the - n option to generate namespace-compatible code:

% slice2php -n MySliceFile.ice

This mapping translates Slice modules into PHP namespaces instead of using the "flattened" (underscore) naming scheme. For example, | ce_Pr op
erties becomes\ | ce\Properti es inthe namespace mapping. However, applications can still refer to global Ice functions by their traditional
names (such as | ce_i ni tial i ze) or by their namespace equivalents (\ I ce\initi al i ze).

Run-time exceptions in PHP

As mentioned earlier, prior releases of Ice for PHP only supported a limited subset of the standard run-time exceptions. An occurrence of an
unsupported local exception was mapped to | ce_UnknownLocal Excepti on.

This release adds support for all local exceptions, which allows an application to more easily react to certain types of errors:

PHP
try
{
$proxy- >sayHel | o();
}
catch(lce_Connecti onLost Excepti on $ex)
{
/1 Handl e connection |oss
}
catch(lce_Local Exception $ex)
{
/1 Handl e other errors
}

This change represents a potential backward compatibility issue: applications that previously caught | ce_UnknownLocal Excepti on may need to
be modified to catch the intended exception instead.

Downcasting in PHP

In prior releases, to downcast a proxy you had to invoke the i ce_checkedCast ori ce_uncheckedCast method on a proxy and supply a type ID:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Run-Time+Exceptions

12

Ice 3.5.1 Documentation

PHP

$hel | o = $proxy->i ce_checkedCast (":: Deno:: Hel | 0");

This APl is susceptible to run-time errors because no validation is performed on the type ID string. For example, renaming the Hel | o interface to G- e
et i ng requires that you not only change all occurrences of Denp_Hel | o to Denp_Gr eet i ng, but also fix any type ID strings that your code might
have embedded. The PHP interpreter does not provide any assistance if you forget to make this change, and you will only discover it when that
particular line of code is executed and fails.

To improve this situation, a minimal class is now generated for each proxy type. The purpose of this class is to supply checkedCast and unchecked
Cast static methods:

PHP

cl ass Denp_Hel | oPrx

{
public static function checkedCast ($proxy, $facetOrCtx=null, $ctx=null);

public static function uncheckedCast ($proxy, $facet=null);

Now your application can downcast a proxy as follows:

PHP

$hell o = Denp_Hel | oPrx: : checkedCast ($pr oxy) ;

You can continue to use i ce_checkedCast and i ce_uncheckedCast but we recommend migrating your application to the new methods.

Other API changes for PHP

This section describes additional changes to the Ice API in this release:
® The global variable $I CE is no longer defined. An application must now initialize its own communicator as described above.

®* Removed the following communicator methods:

PHP

$I CE- >set Property()
$I CE- >get Property()

The equivalent methods are:

PHP

$communi cat or - >get Properties()->set Property()
$communi cat or - >get Properti es()->get Property()

* Removed the following global functions:

PHP

lce_stringToldentity()
lce_identityToString()

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

The equivalent methods are:

PHP

$communi cat or - >stringTol dentity()
$communi cat or->i dentityToString()

® These functions have also been removed:

PHP

I ce_l oadProfile()
I ce_l oadProfil eWthArgs()
I ce_dunpProfile()

Refer to PHP configuration for more information.

Thread pool changes in Ice 3.4

A thread pool supports the ability to automatically grow and shrink as the demand for threads changes, within the limits set by the thread pool's
configuration. In prior releases, the rate at which a thread pool shrinks was not configurable, but Ice 3.4.0 introduces the Thr ead! dl eTi ne property
to allow you to specify how long a thread pool thread must remain idle before it terminates to conserve resources.

lceSSL changes in Ice 3.4

With the addition of the Connect i onl nf o classes in this release, the | ceSSL: : Connect i onl nf o structure has changed from a native type to a
Slice class. This change has several implications for existing applications:

® AsaSlice class, | ceSSL: : Connect i onl nf o cannot provide the X509 certificate chain in its native form, therefore the chain is provided as
a sequence of strings representing the encoded form of each certificate. You can use language-specific facilities to convert these strings
back to certificate objects.

® For your convenience, we have added a native subclass of | ceSSL: : Connecti onl nf o called | ceSSL: : Nati veConnecti onl nf o. This
class provides the certificate chain as certificate objects.

® TheCertificateVerifier interface now uses Nati veConnect i onl nf o instead of Connect i onl nf o. If your application configures a
custom certificate verifier, you will need to modify your implementation accordingly.

® |n C++, also note that Nat i veConnect i onl nf ois now managed by a smart pointer, therefore the signature of the certificate verifier
method becomes the following:

C++

virtual bool verify(const |ceSSL:: NativeConnectionlnfoPtr& = 0;

®* The get Connect i onl nf o helper function has been removed because its functionality has been replaced by the Connect i on: : get | nf oo
peration. For example, in prior releases a C++ application would do the following:

C++

I ce:: ConnectionPtr con = ...
I ceSSL: : Connectionlnfo info = | ceSSL: : get Connecti onl nfo(con);

Now the application should do this:

13 Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/The+Ice+Threading+Model
https://doc.zeroc.com/display/Ice35/Ice+Thread+Pool+Properties#IceThreadPoolProperties-Ice.ThreadPool.name.ThreadIdleTime

14

Ice 3.5.1 Documentation

C++

I ce:: ConnectionPtr con = ...
I ceSSL: : ConnectionlnfoPtr info = I ceSSL:: ConnectionlnfoPtr::dynani cCast(con->getlnfo());

Alternatively, the application can downcast to the native class:

C++

I ce:: ConnectionPtr con = ...
I ceSSL: : Nati veConnectionlnfoPtr info =
I ceSSL: : Nati veConnecti onl nfoPtr:: dynani cCast (con->getinfo());

Migrating IceStorm and IceGrid databases from Ice 3.3

No changes were made to the database schema for IceStorm or IceGrid in this release. However, you still need to update your databases as
described below.

Migrating Freeze databases from Ice 3.3

No changes were made that would affect the content of your Freeze databases. However, we upgraded the version of Berkeley DB, therefore when
upgrading to Ice 3.4 you must also upgrade your database to the Berkeley DB 4.8 format. The only change that affects Freeze is the format of
Berkeley DB's log file.

The instructions below assume that the database environment to be upgraded resides in a directory named db in the current working directory. For a
more detailed discussion of database migration, please refer to the Berkeley DB Upgrade Process.

To migrate your database:

1.
2.

Shut down the old version of the application.
Make a backup copy of the database environment:

> cp -r db backup. db (Uni x)
> xcopy /E db backup. db (W ndows)

. Locate the correct version of the Berkeley DB recovery tool (usually named db_r ecover). It is essential that you use the db_r ecover

executable that matches the Berkeley DB version of your existing Ice release. For Ice 3.3, use db_r ecover from Berkeley DB 4.6. You can
verify the version of your db_r ecover tool by running it with the - Voption:

> db_recover -V

. Use the db_recover tool to run recovery on the database environment:

> db_recover -h db

. Recompile and install the new version of the application.
. Force a checkpoint using the db_checkpoi nt utility. Note that you must use the db_checkpoi nt utility from Berkeley DB 4.8 when

performing this step.

> db_checkpoint -1 -h db

. Restart the application.

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Freeze
http://download.oracle.com/docs/cd/E17076_02/html/upgrading/index.html

Ice 3.5.1 Documentation

Removed APIs in Ice 3.4.0

This section describes APIs that were deprecated in a previous release and have now been removed. Your application may no longer compile
successfully if it relies on one of these APIs.

The following APIs were removed in Ice 3.4.0:

® d aci er2. AddUser ToAl | owCat egori es
Used acier2. Filter. Category. Accept User instead.

® dacier2. All owCat egori es
Used acier2. Filter. Category. Accept instead.

® | ce. UseEvent Log
Ice services (applications that use the C++ class | ce: : Ser vi ce) always use the Windows event log by default.

® Communi cat or: : set Def aul t Cont ext
® Communi cat or: : get Def aul t Cont ext
® (bj ect Prx:ice_defaul t Cont ext
Use the communicator's implicit request context instead.

® nonnut at i ng keyword
This keyword is no longer supported.

® Freeze. UseNonnut ating
Support for this property was removed along with the nonnut at i ng keyword.

® |ce::NegativeSi zeException
The run time now throws Unmar shal Qut Of BoundsExcept i on or Mar shal Except i on instead.

® slice2docbook
This utility is no longer included in Ice.

® |ce::AMD Array_Object_ice_i nvoke
A new overloading of i ce_r esponse in the AMD_Obj ect _i ce_i nvoke class makes AMD_Array_Cbj ect _i ce_i nvoke obsolete.

® Java2 mapping
The Java2 mapping is no longer supported. Refer to Java language mapping changes in Ice 3.4 for more information.

Deprecated APIs in Ice 3.4.0

This section discusses APIs and components that are now deprecated. These APIs will be removed in a future Ice release, therefore we encourage
you to update your applications and eliminate the use of these APIs as soon as possible.

The following APIs were deprecated in Ice 3.4.0:

® Asynchronous Method Invocation (AMI) interface
The AMI interface in Ice 3.3 and earlier is now deprecated for C++, Java, and C#.

® d aci er 2. AddSSLCont ext
Replaced by G aci er 2. AddConnect i onCont ext .

® Standard platform methods should be used instead of the following:

Java

I ce. Obj ect.ice_hash() /] Use hashCode
I ce. Ohj ect Prx. i ce_get Hash() /1 Use hashCode
lce.ObjectPrx.ice_toString() // Use toString

In Java, use hashCode and t oSt ri ng. In C#, use Get HashCode and ToSt ri ng. In Ruby, use hash instead of i ce_get Hash.

® |ce.Uil.generateUU ()
InJavausej ava. util.UU D.randomJUl D().toString().InC#use System Gui d. NewQui d. ToStri ng() .

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Glacier2+Properties#Glacier2Properties-Glacier2.Filter.Category.AcceptUser
https://doc.zeroc.com/display/Ice35/Glacier2+Properties#Glacier2Properties-Glacier2.Filter.Category.Accept
https://doc.zeroc.com/pages/viewpage.action?pageId=14680649#TheServerSidemainFunctioninC++-service
https://doc.zeroc.com/display/Ice35/Implicit+Request+Contexts
https://doc.zeroc.com/display/Ice35/Glacier2+Properties#Glacier2Properties-Glacier2.AddConnectionContext

	Upgrading your Application from Ice 3.3

