Ice 3.5.1 Documentation

Objective-C Mapping for Exceptions

This page describes the Objective-C mapping for exceptions.

On this page:

Exception Inheritance Hierarchy in Objective-C
Mapping for Exception Data Members in Objective-C
Objective-C Mapping for User Exceptions
Objective-C Mapping for Run-Time Exceptions
© Creating and Initializing Run-Time Exceptions in Objective-C
Copying and Deallocating Exceptions in Objective-C
Exception Comparison and Hashing in Objective-C

Exception Inheritance Hierarchy in Objective-C

Here again is a fragment of the Slice definition for our world time server:

Slice

exception GenericError {
string reason;
b
exception BadTi neVal extends GenericError {};
exception BadZoneNane extends GenericError {};

These exception definitions map as follows:

Objective-C

@nterface EXGenericError : | CEUser Exception

{
@rivate

NSString *reason_;
}

@roperty(nonatom c, retain) NSString *reason_;

...
@nd

@nterface EXBadTi neVal : EXGenericError
1.
@nd

@nterface EXBadZoneNane : EXGeneri cError
...
@nd

Each Slice exception is mapped to an Objective-C class. For each exception member, the corresponding class contains a private instance variable
and a property. (Obviously, because BadTi meVal and BadZoneName do not have members, the generated classes for these exceptions also do not
have members.)

The inheritance structure of the Slice exceptions is preserved for the generated classes, so EXBadTi neVal and EXBadZoneNane inherit from EXGen
ericError.

In turn, EXGener i cEr r or derives from | CEUser Except i on:

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/Proxies

Objective-C

@nterface | CEException :
-(NSString* *)ice_nane;

Ice 3.5.1 Documentation

NSExcepti on

@nd

@nterface | CEUser Exception : | CEException
...

@nd

@nterface | CELocal Exception : | CEException

...
@nd

Note that | CEUser Except i on itself derives from | CEExcept i on, which derives from NSExcept i on. Similarly, run-time exceptions derive from a
common base class | CELocal Except i on that derives from | CEExcept i on, so we have the inheritance structure shown below:

MNSException

ICEException

ICELocalException

Specific Run-Time Exceplions...

Inheritance structure for exceptions.

| CEExcept i on provides a single method, i ce_nane, that returns the Slice type ID of the exception with the leading : :

ICEUserException

Specific User Exceptions...

return value of i ce_nane for our Slice Generi cError is Exanpl e: : Generi cError.

Mapping for Exception Data Members in Objective-C

omitted. For example, the

As we mentioned earlier, each data member of a Slice exception generates a corresponding Objective-C property. Here is an example that extends

our Gener i cError with yet another exception:

Copyright © 2017, ZeroC, Inc.



Ice 3.5.1 Documentation

Slice

exception GenericError {
string reason;

I

exception FileError extends GenericError {
string nane;

int errorCode;

}

The generated properties for these exceptions are as follows:

Objective-C

@nterface EXGenericError : |CEUser Exception

{
@rivate

NSString *reason_;
}

@roperty(nonatomic, retain) NSString *reason_;

..
@nd
@nterface EXFil eError : EXGenericError
{
@rivate
NSString *nane_;
| CEl nt errorCode;
}

@roperty(nonatom c, retain) NSString *name_;
@r operty(nonatom c, assign) |CEInt errorCode;

/..
@nd

This is exactly the same mapping as for structure members, with one difference: the nanme and r eason members map to nanme_ and r eason_
properties, whereas — as for structures — er r or Code maps to er r or Code. The trailing underscore for r eason_ and nane_ prevents a name
collision with the nanme and r eason methods that are defined by NSExcept i on: if you call the name method, you receive the name that is stored by N
SExcept i on; if you call the nane_ method, you receive the value of the nanme_ instance variable of EXFi | eError:

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/Objective-C+Mapping+for+Structures

Ice 3.5.1 Documentation

Objective-C
@ry {
/1 Do sonething that can throw ExFileError...
}
@at ch(EXFi | eError *ex)
{
/1 Print the value of the Slice reason, nane,
/1 and errorCode nenbers.
printf("reason: %, nane: %, errorCode: %l\n",
[ex.reason_ UTF8String],
[ ex. name_ UTF8String],
ex. error Code) ;
/1 Print the NSException nane.
printf("NSException nane: %\n", [[ex nanme] UTF8String]);
}

The same escape mechanism applies if you define exception data members named cal | St ackRet ur nAddr esses, r ai se, or user | nf o.

Objective-C Mapping for User Exceptions

Initialization of exceptions follows the same pattern as for structures: each exception (apart from the inherited no-argument i ni t method) provides
an i ni t method that accepts one argument for each data member of the exception, and two convenience constructors. For example, the generated
methods for our EXGener i cError exception look as follows:

Objective-C

@nterface EXGenericError : | CEUser Exception
11

-(id) init:(NSString *)reason;
+(id) genericError;
+(id) genericError:(NSString *)reason;

@ndi f

If a user exception has no data members (and its base exceptions do not have data members either), only the inherited i ni t method and the no-
argument convenience constructor are generated.

If you declare default values in your Slice definition, the inherited i ni t method and the no-argument convenience constructor initialize each data
member with its declared value.

If an exception has a base exception with data members, its i ni t method and convenience constructor accept one argument for each Slice data
member, in base-to-derived order. For example, here are the methods for the Fi | eEr r or exception we defined above:

Objective-C

@nterface EXFileError : EXGenericError
11

-(id) init:(NSString *)reason nane_: (NSString *)nane
error Code: (I CEl nt)error Code;
+(id) fileError;
+(id) fileError:(NSString *)reason name_: (NSString *)name
error Code: (I CEl nt)errorCode;
@nd

Note that i ni t and the second convenience constructor accept three arguments; the first initializes the EXGener i cErr or base, and the remaining
two initialize the instance variables of EXFi | eErr or .

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/Objective-C+Mapping+for+Structures#ObjectiveCMappingforStructures-CreatingandInitializingStructuresinObjective-C
https://doc.zeroc.com/display/Ice35/User+Exceptions

Ice 3.5.1 Documentation

Objective-C Mapping for Run-Time Exceptions

The Ice run time throws run-time exceptions for a number of pre-defined error conditions. All run-time exceptions directly or indirectly derive from | CE
Local Except i on which, in turn, derives from | CEExcept i on. (See the above illustration for an example of an inheritance diagram.)

By catching exceptions at the appropriate point in the hierarchy, you can handle exceptions according to the category of error they indicate:
® NSException
This is the root of the complete inheritance tree. Catching NSExcept i on catches all exceptions, whether they relate to Ice or the Cocoa

framework.

® | CEException
Catching | CEExcept i on catches both user and run-time exceptions.

® | CEUser Exception
This is the root exception for all user exceptions. Catching | CEUser Except i on catches all user exceptions (but not run-time exceptions).

® | CELocal Excepti on
This is the root exception for all run-time exceptions. Catching | CELocal Except i on catches all run-time exceptions (but not user
exceptions).

® | CETi meout Excepti on
This is the base exception for both operation-invocation and connection-establishment timeouts.

® | CEConnect Ti meout Excepti on
This exception is raised when the initial attempt to establish a connection to a server times out.

For example, an | CEConnect Ti neout Except i on can be handled as | CEConnect Ti meout Excepti on, | CETi meout Excepti on, | CELocal Ex
ception, | CEExcepti on, or NSExcept i on.

You will probably have little need to catch run-time exceptions as their most-derived type and instead catch them as | CELocal Except i on; the fine-
grained error handling offered by the remainder of the hierarchy is of interest mainly in the implementation of the Ice run time. Exceptions to this rule

are the exceptions related to facet and object life cycles, which you may want to catch explicitly. These exceptions are | CEFacet Not Exi st Except i
on and | CEQhj ect Not Exi st Except i on, respectively.

Creating and Initializing Run-Time Exceptions in Objective-C

| CELocal Except i on provides two properties that return the file name and line number at which an exception was raised:

Objective-C

@nterface | CELocal Exception : | CEException

{
11

@roperty(nonatonmic, readonly) NSString* file;
@r operty(nonatom c, readonly) int line;

-(id)init:(const char*)file line:(int)line;

+(id) I ocal Exception: (const char*)file line:(int)line;
@nd

The i ni t method and the convenience constructor accept the file name and line number as arguments.

Concrete run-time exceptions that derived from | CEExcept i on provide a corresponding i ni t method and convenience constructor. For example,
here is the Slice definition of Cbj ect Not Exi st Excepti on:

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/Run-Time+Exceptions
https://doc.zeroc.com/display/Ice35/Facets+and+Versioning
https://doc.zeroc.com/display/Ice35/Object+Life+Cycle

Ice 3.5.1 Documentation

Slice

I ocal exception RequestFail edException {
ldentity id;
string facet;
string operation;

1

| ocal exception CbjectNot Exi st Excepti on extends Request Fai |l edException {};

The Objective-C mapping for Obj ect Not Exi st Excepti onis:

Objective-C

@nterface | CEObj ect Not Exi st Exception : | CERequest Fai | edExcepti on
/1
-(id) init:(const char*)file__p line:(int)line__p;
-(id) init:(const char*)file__p
line:(int)line__p
id_:(ICEldentity *)id_
facet: (NSString *)facet
operation: (NSString *)operation;
+(id) objectNot Exi st Exception: (const char*)file__p
line:(int)line__p;
+(id) objectNot Exi st Exception: (const char*)file_ p
line:(int)line__p
id_:(ICEldentity *)id_
facet: (NSString *)facet
operation: (NSString *)operation;
@nd

In other words, as for user exceptions, run-time exceptions provide i ni t methods and convenience constructors that accept arguments in base-to-
derived order. This means that all run-time exceptions require a file name and line number when they are instantiated. For example, you can throw
an | CEObj ect Not Exi st Except i on as follows:

Objective-C

@ hrow [ | CEObj ect Not Exi st Excepti on obj ect Not Exi st Exception: __FILE__ line:__LINE_];

If you throw this exception in the context of an executing operation on the server side, the i d_, f acet , and oper at i on instance variables are
automatically initialized by the Ice run time.

When you instantiate a run-time exception, the base NSExcept i on is initialized such that its nane method returns the same string as i ce_nan®; the
reason and user | nf o methods return ni | .

Copying and Deallocating Exceptions in Objective-C

User exceptions and run-time exceptions implement the NSCopyi ng protocol, so you can copy them. The semantics are the same as for structures.

Similarly, like structures, exceptions implement a deal | oc method that takes care of deallocating the instance variables when an exception is
released.

Exception Comparison and Hashing in Objective-C

Exceptions do not override i sEqual or hash, so these methods have the behavior inherited from NSObj ect .

See Also

® User Exceptions

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/Objective-C+Mapping+for+Structures#ObjectiveCMappingforStructures-CopyingStructuresinObjective-C
https://doc.zeroc.com/display/Ice35/User+Exceptions

Ice 3.5.1 Documentation

Run-Time Exceptions

Objective-C Mapping for Modules
Objective-C Mapping for Identifiers
Objective-C Mapping for Built-In Types
Objective-C Mapping for Enumerations
Objective-C Mapping for Structures
Objective-C Mapping for Sequences
Objective-C Mapping for Dictionaries
Objective-C Mapping for Constants
Objective-C Mapping for Interfaces
Facets and Versioning

Object Life Cycle

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/Run-Time+Exceptions
https://doc.zeroc.com/display/Ice35/Objective-C+Mapping+for+Modules
https://doc.zeroc.com/display/Ice35/Objective-C+Mapping+for+Identifiers
https://doc.zeroc.com/display/Ice35/Objective-C+Mapping+for+Built-In+Types
https://doc.zeroc.com/display/Ice35/Objective-C+Mapping+for+Enumerations
https://doc.zeroc.com/display/Ice35/Objective-C+Mapping+for+Structures
https://doc.zeroc.com/display/Ice35/Objective-C+Mapping+for+Sequences
https://doc.zeroc.com/display/Ice35/Objective-C+Mapping+for+Dictionaries
https://doc.zeroc.com/display/Ice35/Objective-C+Mapping+for+Constants
https://doc.zeroc.com/display/Ice35/Objective-C+Mapping+for+Interfaces
https://doc.zeroc.com/display/Ice35/Facets+and+Versioning
https://doc.zeroc.com/display/Ice35/Object+Life+Cycle

	Objective-C Mapping for Exceptions

