
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Sequences
On this page:

Sequence Syntax and Semantics
Using Sequences for Optional Values

Sequence Syntax and Semantics
Sequences are variable-length collections of elements:

Slice

sequence<Fruit> FruitPlatter;

A sequence can be empty—that is, it can contain no elements, or it can hold any number of elements up to the memory limits of your platform.

Sequences can contain elements that are themselves sequences. This arrangement allows you to create lists of lists:

Slice

sequence<FruitPlatter> FruitBanquet;

Sequences are used to model a variety of collections, such as vectors, lists, queues, sets, bags, or trees. (It is up to the application to decide whether
or not order is important; by discarding order, a sequence serves as a set or bag.)

Using Sequences for Optional Values
One particular use of sequences has become idiomatic, namely, the use of a sequence to indicate an optional value. For example, we might have a P

 structure that records the details of the parts that go into a car. The structure could record things such as the name of the part, a description, art
weight, price, and other details. Spare parts commonly have a serial number, which we can model as a value. However, some parts, such as long
simple screws, often do not have a serial number, so what are we supposed to put into the serial number field of a screw? There are a number of
options for dealing with this situation:

Use a sentinel value, such as zero, to indicate the "no serial number" condition.
This approach is workable, provided that a sentinel value is actually available. While it may seem unlikely that anyone would use a serial
number of zero for a part, it is not impossible. And, for other values, such as a temperature value, all values in the range of their type can be
legal, so no sentinel value is available.

Change the type of the serial number from to .long string
Strings come with their own built-in sentinel value, namely the empty string, so we can use an empty string to indicate the "no serial number"
case. This is workable but not ideal: we should not have to change the natural data type of something to just so we get a sentinel string
value.

Add an indicator as to whether the contents of the serial number are valid:

Slice

struct Part {
 string name;
 string description;
 // ...
 bool serialIsValid; // true if part has serial number
 long serialNumber;
};

This is guaranteed to get you into trouble eventually: sooner or later, some programmer will forget to check whether the serial number is
valid before using it and create havoc.

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

Use a sequence to model the optional field.
This technique uses the following convention:

Slice

sequence<long> SerialOpt;

struct Part {
 string name;
 string description;
 // ...
 SerialOpt serialNumber; // optional: zero or one element
};

By convention, the suffix is used to indicate that the sequence is used to model an optional value. If the sequence is empty, the value is Opt
obviously not there; if it contains a single element, that element is the value. The obvious drawback of this scheme is that someone could
put more than one element into the sequence. This could be rectified by adding a special-purpose Slice construct for optional values.
However, optional values are not used frequently enough to justify the complexity of adding a dedicated language feature. (As we will see in

, you can also use class hierarchies to model optional fields.)Classes

See Also

Enumerations
Structures
Dictionaries
Constants and Literals
Classes

https://doc.zeroc.com/display/Ice34/Classes
https://doc.zeroc.com/display/Ice34/Enumerations
https://doc.zeroc.com/display/Ice34/Structures
https://doc.zeroc.com/display/Ice34/Dictionaries
https://doc.zeroc.com/display/Ice34/Constants+and+Literals
https://doc.zeroc.com/display/Ice34/Classes

	Sequences

