Ice 3.4.2 Documentation

Constants and Literals

On this page:

Allowable Types for Constants
Boolean constants

Integer literals

Floating-point literals

String literals

Allowable Types for Constants

Slice allows you to define constants for the following types:

® Anintegral type (bool , byt e, short,int,| ong)
® Afloating point type (f | oat or doubl e)

® string

® enum

Here are a few examples:

Slice

const bool AppendByDef ault = true;
const byte Lower Ni bbl e = 0x0f;
const string Advice = "Don't Panic!";
const short TheAnswer = 42;

const doubl e Pl = 3.1416;

enum Fruit { Apple, Pear, Orange };
const Fruit FavoriteFruit = Pear;

The syntax for literals is the same as for C++ and Java (with a few minor exceptions).

Boolean constants

Boolean constants can only be initialized with the keywords f al se and t r ue. (You cannot use 0 and 1 to represent f al se and t r ue.)

Integer literals
Integer literals can be specified in decimal, octal, or hexadecimal notation.
For example:

Slice

const byte TheAnswer = 42;

const byte TheAnswerlnCctal = 052;
const byte TheAnswer|nHex = Ox2A; /1 or Ox2a

Be aware that, if you interpret byt e as a number instead of a bit pattern, you may get different results in different languages. For example, for C++, b
yt e maps to unsi gned char whereas, for Java, byt e maps to byt e, which is a signed type.

Note that suffixes to indicate long and unsigned constants (I , L, u, U, used by C++) are illegal:

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice34/Basic+Types#BasicTypes-IntegerTypes
https://doc.zeroc.com/display/Ice34/Basic+Types#BasicTypes-Floating-PointTypes
https://doc.zeroc.com/display/Ice34/Basic+Types#BasicTypes-Strings
https://doc.zeroc.com/display/Ice34/Enumerations

Slice

const
const

long Wong = Ou;
| ong WongToo = 1000000L;

Ice 3.4.2 Documentation

/1 Syntax error
/1 Syntax error

The value of an integer literal must be within the range of its constant type, as shown in the Built-In Basic Types table; otherwise the compiler will
issue a diagnostic.

Floating-point literals

Floating-point literals use C++ syntax, except that you cannot use an | or L suffix to indicate an extended floating-point constant; however, f and F
are legal (but are ignored).

Here are a few examples:

Slice

const
const
const
const
const
const

fl oat
fl oat
fl oat
fl oat
fl oat
fl oat

P1
P2
P3
P4
P5
P6

- 3. 14f; 11
+3. 1le- 3; /1
.1 /1
1.; /1
. 9E5; /1
5e2; /1

Integer & fraction,

I nt eger,

Fraction part only

fraction,

Integer part only
Fraction part and exponent
I nteger part and exponent

with suffix
and exponent

Floating-point literals must be within the range of the constant type (f | oat or doubl e); otherwise, the compiler will issue a diagnostic.

String literals

String literals support the same escape sequences as C++.

Here are some examples:

Slice

const string

const string
const string
const string
const string
const string
const string
const string
const string
const string
const string
const string

const string
const string

AnOrdinaryString =

Doubl eQuote =

TwoSi ngl eQuot es

Newl i ne =
CarriageReturn

Hori zontal Tab =

Vertical Tab =
For nFeed =
Alert =
Backspace =
QuestionMark =
Backsl ash =

Cct al Escape =
HexEscape =

"Hello World!'";

e
ey
"\'n";
"\r";
"\t
"\v";
"\
"\a";
"\'b";
"\
"\

"\ 007";
"\ x07";

Note that Slice has no concept of a null string:

/1" and \' are XK

/] Same as \a
/1 Ditto

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice34/Basic+Types#BasicTypes-Built-InBasicTypes

Ice 3.4.2 Documentation

Slice

const string nullString = 0; /1 1llegal!

Null strings simply do not exist in Slice and, therefore, do not exist as a legal value for a string anywhere in the Ice platform. The reason for this
decision is that null strings do not exist in many programming languages.

@ Many languages other than C and C++ use a byte array as the internal string representation. Null strings do not exist (and would be very
difficult to map) in such languages.

A constant definition may also refer to another constant. It is not necessary for both constants to have the same Slice type, but the value of the
existing constant must be compatible with the type of the constant being defined.

Consider the examples below:

Slice

const int SlIZE = 500;

const int DEFAULT_SIZE = SIZE, // K
const short SHORT_SIZE = SIZE, // K
const byte BYTE_SIZE = Sl ZE; /1 ERROR

The DEFAULT_SI ZE constant is legal because it has the same type as S| ZE, and SHORT_SI ZE is legal because the value of SI ZE (500) is within
the range of the Slice shor t type. However, BYTE_SI ZE is illegal because the value of S| ZE is outside the range of the byt e type.

See Also

Enumerations
Structures
Sequences
Dictionaries

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice34/Enumerations
https://doc.zeroc.com/display/Ice34/Structures
https://doc.zeroc.com/display/Ice34/Sequences
https://doc.zeroc.com/display/Ice34/Dictionaries

	Constants and Literals

