
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Using Configuration Files
The ability to configure an application's properties externally provides a great deal of flexibility: you can use any combination of command-line options
and configuration files to achieve the desired settings, all without having to modify your application. This page describes two ways of loading property
settings from a file.

On this page:

Prerequisites for Using Configuration Files
The ICE_CONFIG Environment Variable
The Ice.Config Property

Prerequisites for Using Configuration Files
The Ice run time automatically loads a configuration file during the creation of a , which is an instance of the property set Ice::Properties
interface. Every communicator has its own property set from which it derives its configuration. If an application does not supply a property set when it
calls (or the equivalent in other language mappings), the Ice run time internally creates a for the new communicator.Ice::initialize property set

Note however that Ice loads a configuration file automatically only when the application creates a property set using an argument vector. This occurs
when the application passes an argument vector to create a property set explicitly, or when the application passes an argument vector to Ice::

.initialize

Both of the mechanisms described below can also retrieve property settings from .additional sources

The Environment VariableICE_CONFIG
Ice automatically loads the contents of the configuration file named in the environment variable (assuming the are met). ICE_CONFIG prerequisites
For example:

$ export ICE_CONFIG=/usr/local/filesystem/config
$./server

This causes the server to read its property settings from the configuration file in ./usr/local/filesystem/config

If you use the environment variable together with command-line options for other properties, the settings on the command line override ICE_CONFIG
the settings in the configuration file. For example:

$ export ICE_CONFIG=/usr/local/filesystem/config
$./server --Ice.MessageSizeMax=4096

This sets the value of the property to regardless of any setting of this property in .Ice.MessageSizeMax 4096 /usr/local/filesystem/config

You can use multiple configuration files by specifying a list of configuration file names separated by commas. For example:

$ export ICE_CONFIG=/usr/local/filesystem/config,./config
$./server

This causes property settings to be retrieved from , followed by any settings in the file in the current /usr/local/filesystem/config config
directory; settings in override settings ../config /usr/local/filesystem/config

The PropertyIce.Config
The property has special meaning to the Ice run time: it determines the path name of a configuration file from which to read property Ice.Config
settings. For example:

$./server --Ice.Config=/usr/local/filesystem/config

https://doc.zeroc.com/display/Ice34/The+Properties+Interface
https://doc.zeroc.com/display/Ice34/Alternate+Property+Stores
https://doc.zeroc.com/display/Ice34/Ice+Configuration+Property

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

This causes property settings to be read from the configuration file in ./usr/local/filesystem/config

The command-line option overrides any setting of the environment variable, that is, if the environment --Ice.Config ICE_CONFIG ICE_CONFIG
variable is set and you also use the command-line option, the configuration file specified by the environment variable --Ice.Config ICE_CONFIG
is ignored.

If you use the command-line option together with settings for other properties, the settings on the command line override the settings --Ice.Config
in the configuration file. For example:

$./server --Ice.Config=/usr/local/filesystem/config --Ice.MessageSizeMax=4096

This sets the value of the property to regardless of any setting of this property in Ice.MessageSizeMax 4096 /usr/local/filesystem/config
. The placement of the option on the command line has no influence on this precedence. For example, the following command is --Ice.Config
equivalent to the preceding one:

$./server --Ice.MessageSizeMax=4096 --Ice.Config=/usr/local/filesystem/config

Settings of the property inside a configuration file are ignored, that is, you can set only on the command line.Ice.Config Ice.Config

If you use the option more than once, only the last setting of the option is used and the preceding ones are ignored. For example:--Ice.Config

$./server --Ice.Config=file1 --Ice.Config=file2

This is equivalent to using:

$./server --Ice.Config=file2

You can use multiple configuration files by specifying a list of configuration file names separated by commas. For example:

$./server --Ice.Config=/usr/local/filesystem/config,./config

This causes property settings to be retrieved from , followed by any settings in the file in the current /usr/local/filesystem/config config
directory; settings in override settings ../config /usr/local/filesystem/config

See Also

Alternate Property Stores
The Properties Interface

https://doc.zeroc.com/display/Ice34/Alternate+Property+Stores
https://doc.zeroc.com/display/Ice34/The+Properties+Interface

	Using Configuration Files

