
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Serializable Objects
Ice for Java and Ice for .NET allow you to send native Java and CLR objects as operation parameters. The Ice run time automatically serializes and 
deserializes the objects as part of an invocation. This mechanism allows you to transmit Java and CLR objects that do not have a corresponding 
Slice definition.

On this page:

The serializable Metadata Directive
Architectural Implications

The  Metadata Directiveserializable
To enable serialization, the parameter type must be a byte sequence with appropriate metadata. For example:

Slice

["java:serializable:SomePackage.JavaClass"]
sequence<byte> JavaObj;

interface JavaExample {
    void sendJavaObj(JavaObj o);
};

["clr:serializable:SomeNamespace.CLRClass"]
sequence<byte> CLRObj;

interface CLRExample {
    void sendCLRObj(CLRObj o);
};

The  metadata indicates that the corresponding byte sequence holds a  named java:serializable Java serializable type SomePackage.
. Your program must provide an implementation of this class; the class must implement  .JavaClass java.io.Serializable

Similarly, the  metadata indicates that the corresponding byte sequences holds a  named clr:serializable CLR serializable type SomeNamespac
. Your program must provide an implementation of this class; the class must be marked with the  attribute.e.CLRClass Serializable

Architectural Implications
The  metadata directive permits you to transmit arbitrary Java and CLR objects across the network without the need to define serializable
corresponding Slice classes or structures. This is mainly a convenience feature: you could achieve the same thing by using ordinary Slice byte 
sequences and explicitly serializing your Java or CLR objects into byte sequences at the sending end, and deserializing them at the receiving end. 
The  metadata conveniently takes care of these chores for you and so is simpler to use.serializable

Despite its convenience, you should use this feature with caution because it destroys language transparency. For example, a serialized Java object is 
useless to a C++ server. All the C++ server can do with such an object is to pass it on to some other process as a byte sequence. (Of course, if that 
receiving process is a Java process, it can deserialize the byte sequence.)

Further, similar to Slice , a serialized object can be deserialized only if client and server agree on the definition of the serialized classes with methods
class. In Java, this is enforced by the  field of each instance; in the CLR, client and server must reference identical assembly serialVersionUID
versions. This creates much tighter coupling of client and server than exchanging Slice-defined types.

And, of course, if you build a system that relies on, for example, the exchange of serialized Java objects and you later find that you need to add C++ 
or C# components to the system, these components cannot do anything with the serialized Java objects other than pass them around as a blob of 
bytes.

So, if you do use these features, be clear that this implies tighter coupling between client and server, and that it creates additional library versioning 
and distribution issues because all parts of the system must agree on the implementation of the serialized objects.

See Also

Serializable Objects in Java
Serializable Objects in C#
Architectural Implications of Classes

https://doc.zeroc.com/display/Ice34/Serializable+Objects+in+Java
https://doc.zeroc.com/display/Ice34/Serializable+Objects+in+C-Sharp
https://doc.zeroc.com/display/Ice34/Architectural+Implications+of+Classes
https://doc.zeroc.com/display/Ice34/Serializable+Objects+in+Java
https://doc.zeroc.com/display/Ice34/Serializable+Objects+in+C-Sharp
https://doc.zeroc.com/display/Ice34/Architectural+Implications+of+Classes


Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.


	Serializable Objects

