
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

1.

2.
3.

Objective-C Mapping for Classes
On this page:

Basic Objective-C Mapping for Classes
Derivation from ICEObject in Objective-C
Class Data Members in Objective-C
Class Constructors in Objective-C
Derived Classes in Objective-C
Passing Classes as Parameters in Objective-C
Operations of Classes in Objective-C
Class Factories in Objective-C

Using a Category to Implement Operations in Objective-C
Copying of Classes in Objective-C

Cyclic References in Objective-C

Basic Objective-C Mapping for Classes
A Slice is mapped similar to a structure and exception.class

The generated class contains an instance variable and a property for each Slice data member. Consider the following class definition:

Slice

class TimeOfDay {
 short hour; // 0 - 23
 short minute; // 0 - 59
 short second; // 0 - 59
 string format(); // Return time as hh:mm:ss
};

The Slice compiler generates the following code for this definition:

Objective-C

@interface EXTimeOfDay : ICEObject
{
 ICEShort hour;
 ICEShort minute;
 ICEShort second;
}

@property(nonatomic, assign) ICEShort hour;
@property(nonatomic, assign) ICEShort minute;
@property(nonatomic, assign) ICEShort second;

-(id) init:(ICEShort)hour minute:(ICEShort)minute second:(ICEShort)second;
+(id) timeOfDay;
+(id) timeOfDay:(ICEShort)hour minute:(ICEShort)minute second:(ICEShort)second;
@end

There are a number of things to note about the generated code:

The generated class derives from , which is the parent of all classes. Note that is the same as EXTimeOfDay ICEObject ICEObject not I
. In other words, you pass a class where a proxy is expected and vice versa.CEObjectPrx cannot

The generated class contains a property for each Slice data member.
The generated class provides an method that accepts one argument for each data member, and it provides the same two init
convenience constructors as structures and exceptions.

Derivation from in Objective-CICEObject

https://doc.zeroc.com/display/Ice35/Classes

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

All classes ultimately derive from a common base class, . Note that this is not the same as implementing the protocol ICEObject ICEObjectPrx
(which is implemented by proxies). As a result, you cannot pass a class where a proxy is expected (and vice versa) because the base types for
classes and proxies are not compatible.

ICEObject defines a number of methods:

Objective-C

@protocol ICEObject <NSObject>
-(BOOL) ice_isA:(NSString*)typeId current:(ICECurrent*)current;
-(void) ice_ping:(ICECurrent*)current;
-(NSString*) ice_id:(ICECurrent*)current;
-(NSArray*) ice_ids:(ICECurrent*)current;
@end

@interface ICEObject NSObject <ICEObject, NSCopying>
-(BOOL) ice_isA:(NSString*)typeId;
-(void) ice_ping;
-(NSString*) ice_id;
-(NSArray*) ice_ids;
+(NSString*) ice_staticId;
-(void) ice_preMarshal;
-(void) ice_postUnmarshal;
-(BOOL) ice_dispatch:(id<ICERequest>)request;
-(id) initWithDelegate:(id)delegate;
+(id) objectWithDelegate:(id)delegate;
@end

The methods of behave as follows:ICEObject

ice_isA
This function returns if the object supports the given , and otherwise.YES type ID NO

ice_ping
 provides a basic reachability test for the class. If it completes without raising an exception, the class exists and is reachable. ice_ping

Note that is normally only invoked on the proxy for a class that might be remote because a class instance that is local (in the ice_ping
caller's address space) can always be reached.

ice_ids
This function returns a string sequence representing all of the supported by this object, including .type IDs ::Ice::Object

ice_id
This function returns the actual run-time for a class. If you call via a pointer to a base instance, the returned type ID is the type ID ice_id
actual (possibly more derived) type ID of the instance.

ice_staticId
This function returns the static of a class.type ID

ice_preMarshal
The Ice run time invokes this function prior to marshaling the object's state, providing the opportunity for a subclass to validate its declared
data members.

ice_postUnmarshal
The Ice run time invokes this function after unmarshaling an object's state. A subclass typically overrides this function when it needs to
perform additional initialization using the values of its declared data members.

ice_dispatch
This function dispatches an incoming request to a servant. It is used in the implementation of .dispatch interceptors

initWithDelegate
These constructors enable the implementation of servants with a .delegate

Class Data Members in Objective-C

The methods are split between the protocol and class because classes can be servants.ICEObject

https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Dispatch+Interceptors
https://doc.zeroc.com/display/Ice35/Server-Side+Objective-C+Mapping+for+Interfaces#ServerSideObjectiveCMappingforInterfaces-delegate

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

By default, data members of classes are mapped exactly as for structures and exceptions: for each data member in the Slice definition, the
generated class contains a corresponding property.

Class Constructors in Objective-C
Classes provide the usual method and a parameter-less convenience constructor that perform default initialization of the class's instance init
variables. If you declare default values in your , the method and convenience constructor initialize each data member with its Slice definition init
declared value.

In addition, if a class has data members, it provides an method and a convenience constructor that accept one argument for each data init
member. This allows you to allocate and initialize a class instance in a single statement (instead of first having to allocate and default-initialize the
instance and then assign to its properties).

For derived classes, the method and the convenience constructor have one parameter for each of the base class's data members, plus one init
parameter for each of the derived class's data members, in base-to-derived order. For example:

Slice

class Base {
 int i;
};

class Derived extends Base {
 string s;
};

This generates:

Objective-C

@interface EXBase : ICEObject
// ...

@property(nonatomic, assign) ICEInt i;

-(id) init:(ICEInt)i;
+(id) base;
+(id) base:(ICEInt)i;
@end

@interface EXDerived : EXBase
// ...

@property(nonatomic, retain) NSString *s;

-(id) init:(ICEInt)i s:(NSString *)s;
+(id) derived;
+(id) derived:(ICEInt)i s:(NSString *)s;
@end

Derived Classes in Objective-C
Note that, in the preceding example, the derivation of the Slice definitions is preserved for the generated classes: derives from , EXBase ICEObject
and derives from . This allows you to treat and pass classes polymorphically: you can always pass an instance EXDerived EXBase EXDerived
where an instance is expected.EXBase

Passing Classes as Parameters in Objective-C

https://doc.zeroc.com/display/Ice35/Simple+Classes

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

Classes are passed by pointer, like any other Objective-C object. For example, here is an operation that accepts a as an in-parameter and Base
returns a :Derived

Slice

Derived getDerived(Base d);

The corresponding proxy method looks as follows:

Objective-C

-(EXDerived *) getDerived:(EXBase *)d;

To pass a null instance, you simply pass .nil

Operations of Classes in Objective-C
If you look back at the code that is generated for the class, you will notice that there is no indication at all that the class has a EXTimeOfDay format
operation. As opposed to proxies, classes do not implement any protocol that would define which operations are available. This means that you can
partially implement the operations of a class. For example, you might have a Slice class with five operations that is returned from a server to a client.
If the client uses only one of the five operations, the client-side code needs to implement only that one operation and can leave the remaining four
operations without implementation. (If the class were to implement a mandatory protocol, the client-side code would have to implement all operations
in order to avoid a compiler warning.)

Of course, you must implement those operations that you actually intend to call. The mapping of operations for classes follows the server-side
mapping for operations on interfaces: parameter types and labels are exactly the same. (See for details.) In a Parameter Passing in Objective-C
nutshell, the server-side mapping is the same as the client-side mapping except that, for types that have mutable and immutable variants, they map
to the immutable variant where the client-side mapping uses the mutable variant, and vice versa.

For example, here is how we could implement the operation of our class:format TimeOfDay

Objective-C

@interface TimeOfDayI : EXTimeOfDay
@end

@implementation TimeOfDayI
-(NSString *) format
{
 return [NSString stringWithFormat:@"%.2d:%.2d:%.2d", self.hour, self.minute, self.second];
}
@end

By convention, the implementation of classes with operations has the same name as the Slice class with an -suffix. Doing this is not mandatory — I
you can call your implementation class anything you like. However, if you do not want to use the -suffix naming, we recommend that you adopt I
another naming convention and follow it consistently.

Note that derives from . This is because, as we will see in a moment, the Ice run time will instantiate a TimeOfDayI EXTimeOfDay TimeOfDayI
instance whenever it receives a instance over the wire and expects that instance to provide the properties of .TimeOfDay EXTimeOfDay

Class Factories in Objective-C
Having created a class such as , we have an implementation and we can instantiate the class, but we cannot receive it as TimeOfDayI TimeOfDayI
the return value or as an out-parameter from an operation invocation. To see why, consider the following simple interface:

https://doc.zeroc.com/display/Ice35/Parameter+Passing+in+Objective-C

Ice 3.5.1 Documentation

5 Copyright © 2017, ZeroC, Inc.

Slice

interface Time {
 TimeOfDay get();
};

When a client invokes the operation, the Ice run time must instantiate and return an instance of the class. However, unless we tell get TimeOfDayI
it, the Ice run time cannot magically know that we have created a class that implements a method. To allow the Ice run time to TimeOfDayI format
instantiate the correct object, we must provide a factory that knows that the Slice class is implemented by our class. The TimeOfDay TimeOfDayI I

 interface provides us with the necessary operations:ce::Communicator

Slice

["objc:prefix:ICE"]
module Ice {
 local interface ObjectFactory {
 Object create(string type);
 void destroy();
 };

 local interface Communicator {
 void addObjectFactory(ObjectFactory factory, string id);
 ObjectFactory findObjectFactory(string id);
 // ...
 };
};

To supply the Ice run time with a factory for our class, we must implement the interface:TimeOfDayI ObjectFactory

Slice

module Ice {
 local interface ObjectFactory {
 Object create(string type);
 void destroy();
 };
};

The object factory's operation is called by the Ice run time when it needs to instantiate a class. The factory's operation create TimeOfDay destroy
is called by the Ice run time when its communicator is destroyed. A possible implementation of our object factory is:

Objective-C

@interface ObjectFactory<ICEObjectFactory>
@end

@implementation ObjectFactory
-(ICEObject*) create:(NSString *)type
{
 NSAssert([type isEqualToString:@"::Example::TimeOfDay"]);
 return [[TimeOfDayI alloc] init];
}
@end

The method is passed the of the class to instantiate. For our class, the type ID is . Our create type ID TimeOfDay "::Example::TimeOfDay"
implementation of checks the type ID: if it is , it instantiates and returns a object. For other type create "::Example::TimeOfDay" TimeOfDayI
IDs, it asserts because it does not know how to instantiate other types of objects.

https://doc.zeroc.com/display/Ice35/Type+IDs

Ice 3.5.1 Documentation

6 Copyright © 2017, ZeroC, Inc.

Note that your factory autorelease the returned instance. The Ice run time takes care of the necessary memory management activities on must not
your behalf.

Given a factory implementation, such as our , we must inform the Ice run time of the existence of the factory:ObjectFactory

Objective-C

id<ICECommunicator> ice = ...;
ObjectFactory *factory = [[[ObjectFactory alloc] init] autorelease];
[ic addObjectFactory:factory sliceId:@"::Example::TimeOfDay"];

Now, whenever the Ice run time needs to instantiate a class with the type ID , it calls the method of the "::Example::TimeOfDay" create
registered instance.ObjectFactory

The operation of the object factory is invoked by the Ice run time when the communicator is destroyed. This gives you a chance to clean up destroy
any resources that may be used by your factory. Do not call on the factory while it is registered with the communicator — if you do, the Ice destroy
run time has no idea that this has happened and, depending on what your implementation is doing, may cause undefined behavior when destroy
the Ice run time tries to next use the factory.

The run time guarantees that will be the last call made on the factory, that is, will not be called concurrently with , and destroy create destroy cre
 will not be called once has been called. However, the Ice run time may make concurrent calls to .ate destroy create

Note that you cannot register a factory for the same type ID twice: if you call with a type ID for which a factory is registered, the addObjectFactory
Ice run time throws an .AlreadyRegisteredException

Finally, keep in mind that if a class has only data members, but no operations, you need not (but can) create and register an object factory to transmit
instances of such a class. Only if a class has operations do you have to define and register an object factory.

Using a Category to Implement Operations in Objective-C

An alternative to registering a class factory is to use an Objective-C category to implement operations. For example, we could have implemented our
 method using a category instead:format

Objective-C

@interface EXTimeOfDay (TimeOfDayI)
@end

@implementation EXTimeOfDay (TimeOfDayI)
-(NSString *) format
{
 return [NSString stringWithFormat:@"%.2d:%.2d:%.2d", self.hour, self.minute, self.second];
}
@end

In this case, there is no need to derive from the generated class because we provide the format implementation as a category. There EXTimeOfDay
is also no need to register a class factory: the Ice run time instantiates an instance when a instance arrives over the wire, EXTimeOfDay TimeOfDay
and the method is found at run time when it is actually called.format

This is a viable alternative approach to implement class operations. However, keep in mind that, if the operation implementation requires use of
instance variables that are not defined as part of the Slice definitions of a class, you cannot use this approach because Objective-C categories do not
permit you to add instance variables to a class.

Copying of Classes in Objective-C
Classes implement . The behavior is the same as for structures: instance variables of value type are copied by assignment, instance NSCopying
variables of pointer type are copied by calling , that is, the copy is shallow. To illustrate this, consider the following class definition:retain

Ice 3.5.1 Documentation

7 Copyright © 2017, ZeroC, Inc.

Slice

class Node {
 int i;
 string s;
 Node next;
};

We can initialize two instances of type as follows:EXNode

Objective-C

NSString lastString = [NSString stringWithString:@"last"];
EXNode *last = [EXNode node:99 s:lastString next:nil];

NSString firstString = [NSString stringWithString:@"first"];
EXNode *first = [EXNode node:1 s:firstString next:last];

This creates the situation shown below:

Two instances of type .EXNode

Now we create a copy of the first node by calling :copy

Objective-C

EXNode *copy = [[first copy] autorelease];

This creates the situation shown here:

Ice 3.5.1 Documentation

8 Copyright © 2017, ZeroC, Inc.

 instances after calling on .EXNode copy first

As you can see, the first node is copied, but the last node (pointed at by the instance variable of the first node) is not copied; instead, next first
and now both have their instance variable point at the same last node, and both point at the same string.copy next

Cyclic References in Objective-C

One thing to be aware of are cyclic references among classes. As an example, we can easily create a cycle by executing the following statements:

Objective-C

EXNode *first = [EXNode node];
ExNode *last = [EXNode node];
first.next = last;
last.next = first;

This makes the instance variable of the two classes point at each other, creating the cycle shown below:next

Two nodes with cyclic references.

Ice 3.5.1 Documentation

9 Copyright © 2017, ZeroC, Inc.

There is no problem with sending this class graph as a parameter. For example, you could pass either or as a parameter to an first last
operation and, in the server, the Ice run time will faithfully rebuild the corresponding graph, preserving the cycle. However, if a server returns such a
graph from an operation invocation as the return value or as an out-parameter, all class instances that are part of a cycle are leaked. The same is
true on the client side: if you receive such a graph from an operation invocation and do not explicitly break the cycle, you will leak all instances that
form part of the cycle.

Because it is difficult to break cycles manually (and, on the server side, for return values and out-parameters, it is impossible to break them), we
recommend that you avoid cyclic references among classes.

See Also

Simple Classes
Objective-C Mapping for Classes]
Server-Side Objective-C Mapping for Interfaces
Parameter Passing in Objective-C
Dispatch Interceptors

A future version of the Objective-C run time may provide a garbage collector similar to the one used by Ice for C++.

https://doc.zeroc.com/display/Ice35/Simple+Classes
https://doc.zeroc.com/display/Ice35/Server-Side+Objective-C+Mapping+for+Interfaces
https://doc.zeroc.com/display/Ice35/Parameter+Passing+in+Objective-C
https://doc.zeroc.com/display/Ice35/Dispatch+Interceptors

	Objective-C Mapping for Classes

