
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

C++ Mapping for Sequences
On this page:

Default Sequence Mapping in C++
Custom Sequence Mapping in C++

STL Container Mapping for Sequences
Array Mapping for Sequences in C++
Range Mapping for Sequences in C++

Default Sequence Mapping in C++
Here is the definition of our  sequence once more:FruitPlatter

Slice

sequence<Fruit> FruitPlatter;

The Slice compiler generates the following definition for the  sequence:FruitPlatter

C++

typedef std::vector<Fruit> FruitPlatter;

As you can see, the sequence simply maps to an STL vector, so you can use the sequence like any other STL vector. For example:

C++

// Make a small platter with one Apple and one Orange
//
FruitPlatter p;
p.push_back(Apple);
p.push_back(Orange);

As you would expect, you can use all the usual STL iterators and algorithms with this vector.

Custom Sequence Mapping in C++
In addition to the default mapping of sequences to vectors, Ice supports three additional custom mappings for sequences.

STL Container Mapping for Sequences

You can override the default mapping of Slice sequences to C++ vectors with a metadata directive, for example:

https://doc.zeroc.com/display/Ice34/Sequences


Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

Slice

[["cpp:include:list"]]

module Food {

    enum Fruit { Apple, Pear, Orange };

    ["cpp:type:std::list< ::Food::Fruit>"]
    sequence<Fruit> FruitPlatter;

};

With this metadata directive, the sequence now maps to a C++ :std::list

C++

#include <list>

namespace Food {

    typedef std::list< Food::Fruit> FruitPlatter;

    // ...
}

The  metadata directive must be applied to a sequence definition; anything following the  prefix is taken to be the name of the cpp:type cpp:type:
type. For example, we could use . In that case, the compiler would use a fully-qualified name to ["cpp:type:::std::list< ::Food::Fruit>"]
define the type:

C++

typedef ::std::list< ::Food::Fruit> FruitPlatter;

Note that the code generator inserts whatever string you specify following the  prefix literally into the generated code. This means that, to cpp:type:
avoid C++ compilation failures due to unknown symbols, you should use a qualified name for the type.

Also note that, to avoid compilation errors in the generated code, you must instruct the compiler to generate an appropriate include directive with the c
 global metadata directive. This causes the compiler to add the linepp:include

C++

#include <list>

to the generated header file.

Instead of , you can specify a type of your own as the sequence type, for example:std::list



Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

Slice

[["cpp:include:FruitBowl.h"]]

module Food {

    enum Fruit { Apple, Pear, Orange };

    ["cpp:type:FruitBowl"]
    sequence<Fruit> FruitPlatter;

};

With these metadata directives, the compiler will use a C++ type  as the sequence type, and add an include directive for the header file FruitBowl F
 to the generated code.ruitBowl.h

You can use any class of your choice as a sequence type, but the class must meet certain requirements. ( , , and  happen to vector list deque
meet these requirements.)

The class must have a default constructor and a single-argument constructor that takes the size of the sequence as an argument of 
unsigned integral type.
The class must have a copy constructor.
The class must provide a member function  that returns the number elements in the sequence as an unsigned integral type.size
The class must provide a member function  that swaps the contents of the sequence with another sequence of the same type.swap
The class must define  and  types and must provide  and  member functions with the usual iterator const_iterator begin end
semantics; the iterators must be comparable for equality and inequality.

Less formally, this means that if the class looks like a , , or  with respect to these points, you can use it as a custom sequence vector list deque
implementation.

In addition to modifying the type of a sequence itself, you can also modify the mapping for particular . For example:return values or parameters

Slice

[["cpp:include:list"]]
[["cpp:include:deque"]]

module Food {

    enum Fruit { Apple, Pear, Orange };

    sequence<Fruit> FruitPlatter;

    interface Market {
        ["cpp:type:list< ::Food::Fruit>"]
        FruitPlatter barter(["cpp:type:deque< ::Food::Fruit>"] FruitPlatter offer);
    };

};

With this definition, the default mapping of  to a C++  still applies but the return value of  is mapped as a , and FruitPlatter vector barter list
the  parameter is mapped as a .offer deque

Array Mapping for Sequences in C++

The array mapping for sequences applies to  and to  and  operations. For example:input parameters out parameters of AMI AMD

https://doc.zeroc.com/pages/viewpage.action?pageId=5047922
https://doc.zeroc.com/pages/viewpage.action?pageId=5047922
https://doc.zeroc.com/pages/viewpage.action?pageId=5047916
https://doc.zeroc.com/pages/viewpage.action?pageId=5047930


Ice 3.4.2 Documentation

4 Copyright © 2017, ZeroC, Inc.

Slice

interface File {
    void write(["cpp:array"] Ice::ByteSeq contents);
};

The  metadata directive instructs the compiler to map the  parameter to a pair of pointers. With this directive, the  cpp:array contents write
method on the proxy has the following signature:

C++

void write(const std::pair<const Ice::Byte*, const Ice::Byte*>& contents);

To pass a byte sequence to the server, you pass a pair of pointers; the first pointer points at the beginning of the sequence, and the second pointer 
points one element past the end of the sequence.

Similarly, for the server side, the  method on the skeleton has the following signature:write

C++

virtual void write(const ::std::pair<const ::Ice::Byte*, const ::Ice::Byte*>&,
                   const ::Ice::Current& = ::Ice::Current()) = 0;

The passed pointers denote the beginning and end of the sequence as a range   (that is, they use the usual STL semantics for [first, last)
iterators).

The array mapping is useful to achieve zero-copy passing of sequences. The pointers point directly into the server-side transport buffer; this allows 
the server-side run time to avoid creating a  to pass to the operation implementation, thereby avoiding both allocating memory for the vector
sequence and copying its contents into that memory.

Range Mapping for Sequences in C++

The range mapping for sequences is similar to the array mapping and exists for the same purpose, namely, to enable zero-copy of sequence 
parameters:

Slice

interface File {
    void write(["cpp:range"] Ice::ByteSeq contents);
};

The  metadata directive instructs the compiler to map the  parameter to a pair of . With this directive, the cpp:range contents const_iterator wr
 method on the proxy has the following signature:ite

C++

void write(const std::pair<Ice::ByteSeq::const_iterator, Ice::ByteSeq::const_iterator>& contents);

Similarly, for the server side, the  method on the skeleton has the following signature:write

You can use the array mapping for any sequence type. However, it provides a performance advantage only for byte sequences (on all 
platforms) and for sequences of integral or floating point types (x86 platforms only).

The called operation in the server must not store a pointer into the passed sequence because the transport buffer into which the pointer 
points is deallocated as soon as the operation completes.



Ice 3.4.2 Documentation

5 Copyright © 2017, ZeroC, Inc.

C++

virtual void write(
    const ::std::pair<::Ice::ByteSeq::const_iterator, ::Ice::ByteSeq::const_iterator>&,
    const ::Ice::Current& = ::Ice::Current()) = 0;

The passed iterators denote the beginning and end of the sequence as a range   (that is, they use the usual STL semantics for [first, last)
iterators).

The motivation for the range mapping is the same as for the array mapping: the passed iterators point directly into the server-side transport buffer 
and so avoid the need to create a temporary  to pass to the operation.vector

You can optionally add a type name to the  metadata directive, for example:cpp:range

Slice

interface File {
    void write(["cpp:range:std::deque<Ice::Byte>"] Ice::ByteSeq contents);
};

This instructs the compiler to generate a pair of  for the specified type:const_iterator

C++

virtual void write(
    const ::std::pair<std::deque<Ice::Byte>::const_iterator,
                      std::deque<Ice::Byte>::const_iterator>&,
    const ::Ice::Current& = ::Ice::Current()) = 0;

This is useful if you want to combine the range mapping with a custom sequence type that behaves like an STL container.

See Also

Sequences
Asynchronous Method Dispatch (AMD) in C++
C++ Mapping for Enumerations
C++ Mapping for Structures
C++ Mapping for Dictionaries
C++ Mapping for Operations

As for the array mapping, the range mapping can be used with any sequence type, but offers a performance advantage only for byte 
sequences (on all platforms) and for sequences of integral type (x86 platforms only).

The operation must not store an iterator into the passed sequence because the transport buffer into which the iterator points is deallocated 
as soon as the operation completes.

https://doc.zeroc.com/display/Ice34/Sequences
https://doc.zeroc.com/pages/viewpage.action?pageId=5047930
https://doc.zeroc.com/pages/viewpage.action?pageId=5047917
https://doc.zeroc.com/pages/viewpage.action?pageId=5047919
https://doc.zeroc.com/pages/viewpage.action?pageId=5047918
https://doc.zeroc.com/pages/viewpage.action?pageId=5047922

	C++ Mapping for Sequences

