
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Ruby Mapping for Classes
On this page:

Basic Ruby Mapping for Classes
Inheritance from Ice::Object in Ruby
Class Data Members in Ruby
Class Constructors in Ruby
Class Operations in Ruby
Receiving Objects in Ruby
Class Factories in Ruby

Basic Ruby Mapping for Classes
A Slice  maps to a Ruby class with the . For each Slice data member, the generated class contains an instance variable and class same name
accessors to read and write it, just as for structures and exceptions. Consider the following class definition:

Slice

class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
    string format();    // Return time as hh:mm:ss
};

The Ruby mapping generates the following code for this definition:

Ruby

module TimeOfDay_mixin
    include ::Ice::Object_mixin

    # ...

    def inspect
        # ...
    end

    #
    # Operation signatures.
    #
    # def format()

    attr_accessor :hours, :minutes, :seconds
end
class TimeOfDay
    include TimeOfDay_mixin

    def initialize(hour=0, minute=0, second=0)
        @hour = hour
        @minute = minute
        @second = second
    end

    def TimeOfDay.ice_staticId()
        '::M::TimeOfDay'
    end

    # ...
end

https://doc.zeroc.com/display/Ice35/Classes
https://doc.zeroc.com/display/Ice35/Ruby+Mapping+for+Identifiers


Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

1.  

2.  
3.  
4.  

There are a number of things to note about the generated code:

The generated class  includes the mixin module , which in turn includes . This TimeOfDay TimeOfDay_mixin Ice::Object_mixin
reflects the semantics of Slice classes in that all classes implicitly inherit from , which is the ultimate ancestor of all classes. Note Object
that  is  the same as . In other words, you  pass a class where a proxy is expected and vice versa.Object not Ice::ObjectPrx cannot
The constructor defines an instance variable for each Slice data member.
The class defines the class method .ice_staticId
A comment summarizes the method signatures for each Slice operation.

There is quite a bit to discuss here, so we will look at each item in turn.

Inheritance from  in RubyIce::Object
In other language mappings, the inheritance relationship between  and a user-defined Slice class is stated explicitly, in that the generated Object
class derives from a language-specific representation of . Although its class type allows single inheritance, Ruby's loosely-typed nature Object
places less emphasis on class hierarchies and relies more on .duck typing

The Slice mapping for a class follows this convention by placing most of the necessary machinery in a mixin module that the generated class 
includes into its definition. The Ice run time requires an instance of a Slice class to include the mixin module and define values for the declared data 
members, but does not require that the object be an instance of the generated class.

As shown in the illustration below, classes have no relationship to  (which is at the base of the inheritance hierarchy for proxies), Ice::ObjectPrx
therefore you cannot pass a class where a proxy is expected (and vice versa).

Inheritance from Ice::ObjectPrx and Object.

An instance of a Slice class  supports a number of methods:C

Ruby

def ice_isA(id, current=nil)

def ice_ping(current=nil)

def ice_ids(current=nil)

def ice_id(current=nil)

def C.ice_staticId()

def ice_preMarshal()

def ice_postUnmarshal()

The methods behave as follows:

ice_isA
This method returns  if the object supports the given , and  otherwise.true type ID false

In Ruby, an object's type is typically less important than the methods it supports. If it looks like a duck, and acts like a duck, then it is a 
duck.

https://doc.zeroc.com/display/Ice35/Type+IDs


Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

ice_ping
As for interfaces,  provides a basic reachability test for the object.ice_ping

ice_ids
This method returns a string sequence representing all of the  supported by this object, including .type IDs ::Ice::Object

ice_id
This method returns the actual run-time  of the object. If you call  through a reference to a base instance, the returned type id type ID ice_id
is the actual (possibly more derived) type ID of the instance.

ice_staticId
This method returns the static  of the class.type ID

ice_preMarshal
If the object supports this method, the Ice run time invokes it just prior to marshaling the object's state, providing the opportunity for the 
object to validate its declared data members.

ice_postUnmarshal
If the object supports this method, the Ice run time invokes it after unmarshaling the object's state. An object typically defines this method 
when it needs to perform additional initialization using the values of its declared data members.

The mixin module  supplies default definitions of  and . For each Slice class, the generated mixin module Ice::Object_mixin ice_isA ice_ping
defines  and , and the generated class defines the  method.ice_ids ice_id ice_staticId

Note that neither  nor the generated class override  and , so the default implementations apply.Ice::Object hash ==

Class Data Members in Ruby
By default, data members of classes are mapped exactly as for structures and exceptions: for each data member in the Slice definition, the 
generated class contains a corresponding instance variable and accessor methods.

Optional data members use the same mapping as required data members, but an optional data member can also be set to the marker value Ice::
 to indicate that the member is unset. A well-behaved program must compare an optional data member to   before using the Unset Ice::Unset

member's value:

Ruby

v = ...
if v.optionalMember == Ice::Unset
    puts "optionalMember is unset"
else
    puts "optionalMember = " + v.optionalMember
end

If you wish to restrict access to a data member, you can modify its visibility using the  metadata directive. The presence of this directive protected
causes the Slice compiler to generate the data member with protected visibility. As a result, the member can be accessed only by the class itself or 
by one of its subclasses. For example, the  class shown below has the  metadata directive applied to each of its data TimeOfDay protected
members:

Slice

class TimeOfDay {
    ["protected"] short hour;   // 0 - 23
    ["protected"] short minute; // 0 - 59
    ["protected"] short second; // 0 - 59
    string format();    // Return time as hh:mm:ss
};

The Slice compiler produces the following generated code for this definition:

https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Optional+Data+Members


Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

Ruby

module TimeOfDay_mixin
    include ::Ice::Object_mixin

    # ...

    #
    # Operation signatures.
    #
    # def format()

    attr_accessor :hours, :minutes, :seconds
    protected :hours, :hours=
    protected :minutes, :minutes=
    protected :seconds, :seconds=
end
class TimeOfDay
    include TimeOfDay_mixin

    def initialize(hour=0, minute=0, second=0)
        @hour = hour
        @minute = minute
        @second = second
    end

    # ...
end

For a class in which all of the data members are protected, the metadata directive can be applied to the class itself rather than to each member 
individually. For example, we can rewrite the  class as follows:TimeOfDay

Slice

["protected"] class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
    string format();    // Return time as hh:mm:ss
};

Class Constructors in Ruby
Classes have a constructor that assigns to each data member a default value appropriate for its type. You can also declare different  for default values
data members of primitive and enumerated types.

For derived classes, the constructor has one parameter for each of the base class's data members, plus one parameter for each of the derived 
class's data members, in base-to-derived order.

Pass the marker value   as the value of any   that you wish to be unset.Ice::Unset optional data members

Class Operations in Ruby
Operations of classes are mapped to methods in the generated class. This means that, if a class contains operations (such as the  operation format
of our  class), objects representing instances of  must define equivalent methods. For example:TimeOfDay TimeOfDay

https://doc.zeroc.com/display/Ice35/Simple+Classes
https://doc.zeroc.com/display/Ice35/Optional+Data+Members


Ice 3.5.1 Documentation

5 Copyright © 2017, ZeroC, Inc.

Ruby

class TimeOfDayI < TimeOfDay
    def format(current=nil)
        sprintf("%02d:%02d:%02d", @hour, @minute, @second)
    end
end

In this case our implementation class  derives from the generated class . An alternative is to include the generated mixin TimeOfDayI TimeOfDay
module, which makes it possible for the class to derive from a different base class if necessary:

Ruby

class TimeOfDayI < SomeOtherClass
    include TimeOfDay_mixin

    def format(current=nil)
        sprintf("%02d:%02d:%02d", @hour, @minute, @second)
    end
end

As explained , an implementation of a Slice class must include the mixin module but is not required to derive from the generated class.earlier

Ruby allows an existing class to be reopened in order to augment or replace its functionality. This feature provides another way for us to implement a 
Slice class: reopen the generated class and define the necessary methods:

Ruby

class TimeOfDay
    def format(current=nil)
        sprintf("%02d:%02d:%02d", @hour, @minute, @second)
    end
end

As an added benefit, this strategy eliminates the need to define a class factory. The next section describes this subject in more detail.

A Slice class such as  that declares or inherits an operation is inherently abstract. Ruby does not support the notion of abstract classes or TimeOfDay
abstract methods, therefore the mapping merely summarizes the required method signatures in a comment for your convenience.

You may notice that the mapping for an operation adds an optional trailing parameter named . For now, you can ignore this parameter and current
pretend it does not exist.

Receiving Objects in Ruby
We have discussed the ways you can implement a Slice class, but we also need to examine the semantics of receiving an object as the return value 
or as an out-parameter from an operation invocation. Consider the following simple interface:

Slice

interface Time {
    TimeOfDay get();
};

When a client invokes the  operation, the Ice run time must instantiate and return an instance of the  class. Unless we tell it get TimeOfDay
otherwise, the Ice run time in Ruby does exactly that: it instantiates the generated class . Although  is logically an abstract TimeOfDay TimeOfDay
class because its Slice equivalent defined an operation, Ruby has no notion of abstract classes and therefore it is legal to create an instance of this 
class. Furthermore, there are situations in which this is exactly the behavior you want:

when you have reopened the generated class to define its operations, or

https://doc.zeroc.com/display/Ice35/The+Current+Object


Ice 3.5.1 Documentation

6 Copyright © 2017, ZeroC, Inc.

when your program uses only the data members of an object and does not invoke any of its operations.

On the other hand, if you have defined a Ruby class that implements the Slice class, you need the Ice run time to return an instance of your class 
and not an instance of the generated class. The Ice run time cannot magically know about your implementation class, therefore you must inform the 
Ice run time by installing a class factory.

Class Factories in Ruby
The Ice run time invokes a class factory when it needs to instantiate an object of a particular type. If no factory is found, the Ice run time instantiates 
the generated class as described . To install a factory, we use operations provided by the  interface:above Ice::Communicator

Slice

module Ice {
    local interface ObjectFactory {
        Object create(string type);
        void destroy();
    };

    local interface Communicator {
        void addObjectFactory(ObjectFactory factory,

string id);
        ObjectFactory findObjectFactory(string id);
        // ...
    };
};

To supply the Ice run time with a factory for our  class, we must create an object that supports the  interface:TimeOfDayI Ice::ObjectFactory

Ruby

class ObjectFactory
    def create(type)
        fail unless type == M::TimeOfDay::ice_staticId()
        TimeOfDayI.new
    end

    def destroy
        # Nothing to do
    end
end

The object factory's  method is called by the Ice run time when it needs to instantiate a  class. The factory's  method is create TimeOfDay destroy
called by the Ice run time when its communicator is destroyed.

The  method is passed the  of the class to instantiate. For our  class, the type ID is . Our create type ID TimeOfDay "::M::TimeOfDay"
implementation of  checks the type ID: if it matches, the method instantiates and returns a  object. For other type IDs, the create TimeOfDayI
method fails because it does not know how to instantiate other types of objects.

Note that we used the  method to obtain the type ID rather than embedding a literal string. Using a literal type ID string in your code ice_staticId
is discouraged because it can lead to errors that are only detected at run time. For example, if a Slice class or one of its enclosing modules is 
renamed and the literal string is not changed accordingly, a receiver will fail to unmarshal the object and the Ice run time will raise NoObjectFactor

. By using  instead, we avoid any risk of a misspelled or obsolete type ID, and we can discover at compile time if a Slice yException ice_staticId
class or module has been renamed.

Given a factory implementation, such as our , we must inform the Ice run time of the existence of the factory:ObjectFactory

Ruby

ic = ...   # Get Communicator...
ic.addObjectFactory(ObjectFactory.new, M::TimeOfDay::ice_staticId())

https://doc.zeroc.com/display/Ice35/Type+IDs


Ice 3.5.1 Documentation

7 Copyright © 2017, ZeroC, Inc.

Now, whenever the Ice run time needs to instantiate a class with the type ID , it calls the  method of the registered "::M::TimeOfDay" create Obje
 instance.ctFactory

The  operation of the object factory is invoked by the Ice run time when the communicator is destroyed. This gives you a chance to clean up destroy
any resources that may be used by your factory. Do not call  on the factory while it is registered with the communicator — if you do, the Ice destroy
run time has no idea that this has happened and, depending on what your  implementation is doing, may cause undefined behavior when destroy
the Ice run time tries to next use the factory.

The run time guarantees that  will be the last call made on the factory, that is,  will not be called concurrently with , and destroy create destroy cre
 will not be called once  has been called. However, calls to  can be made concurrently.ate destroy create

Note that you cannot register a factory for the same type ID twice: if you call  with a type ID for which a factory is registered, the addObjectFactory
Ice run time throws an .AlreadyRegisteredException

Finally, keep in mind that if a class has only data members, but no operations, you need not create and register an object factory to transmit 
instances of such a class.

See Also

Classes
Type IDs
Optional Data Members
The Current Object

https://doc.zeroc.com/display/Ice35/Classes
https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Optional+Data+Members
https://doc.zeroc.com/display/Ice35/The+Current+Object

	Ruby Mapping for Classes

