Ice 3.4.2 Documentation

C++ Mapping for Operations

On this page:

® Basic C++ Mapping for Operations
Normal and idempotent Operations in C++
® Passing Parameters in C++
O In-Parameters in C++
© OQut-Parameters in C++
© Chained Invocations in C++
® Exception Handling in C++
O Exceptions and Out-Parameters in C++
o Exceptions and Return Values in C++

Basic C++ Mapping for Operations

As we saw in the C++ mapping for interfaces, for each operation on an interface, the proxy class contains a corresponding member function with the
same name. To invoke an operation, you call it via the proxy handle. For example, here is part of the definitions for our file system:

Slice

nodul e Fil esystem {
interface Node {
i denpotent string nane();

The proxy class for the Node interface, tidied up to remove irrelevant detail, is as follows:

C++

nanmespace |ceProxy {
namespace Filesystem {
class Node : virtual public IceProxy::Ice::Object {

public:
std::string nane();
11
b
typedef |celnternal::ProxyHandl e<Node> NodePr x;
11
}
11

The nane operation returns a value of type st ri ng. Given a proxy to an object of type Node, the client can invoke the operation as follows:

C++
NodePrx node = ...; /1 Initialize proxy
string name = node->nane(); /1 Get nane via RPC

The proxy handle overloads oper at or - > to forward method calls to the underlying proxy class instance which, in turn, sends the operation
invocation to the server, waits until the operation is complete, and then unmarshals the return value and returns it to the caller.

Because the return value is of type st ri ng, it is safe to ignore the return value. For example, the following code contains no memory leak:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/viewpage.action?pageId=5047914
https://doc.zeroc.com/display/Ice34/Operations
https://doc.zeroc.com/display/Ice34/Slice+for+a+Simple+File+System

Ice 3.4.2 Documentation

C++
NodePrx node = ...; /1 Initialize proxy
node- >nane(); /1 Usel ess, but no |eak

This is true for all mapped Slice types: you can safely ignore the return value of an operation, no matter what its type — return values are always
returned by value. If you ignore the return value, no memory leak occurs because the destructor of the returned value takes care of deallocating
memory as needed.

Normal and i denpot ent Operations in C++

You can add an i denpot ent qualifier to a Slice operation. As far as the signature for the corresponding proxy methods is concerned, i denpot ent
has no effect. For example, consider the following interface:

Slice

interface Exanple {
string opl();
i denpotent string op2();
i denpotent void op3(string s);
i

The proxy class for this interface looks like this:

C++

nanespace | ceProxy {
class Exanple : virtual public lceProxy::lce::bject {

public:
std::string opl();
std::string op2(); /1 i denmpot ent
voi d op3(const std::string&); /] i denpot ent
11

b

Because i denpot ent affects an aspect of call dispatch, not interface, it makes sense for the mapping to be unaffected by the i denpot ent
keyword.

Passing Parameters in C++

In-Parameters in C++

The parameter passing rules for the C++ mapping are very simple: parameters are passed either by value (for small values) or by const reference
(for values that are larger than a machine word). Semantically, the two ways of passing parameters are identical: it is guaranteed that the value of a
parameter will not be changed by the invocation (with some caveats — see Out-Parameters below and Location Transparency).

Here is an interface with operations that pass parameters of various types from client to server:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Operations#Operations-IdempotentOperations
https://doc.zeroc.com/display/Ice34/Location+Transparency

Ice 3.4.2 Documentation

Slice

struct Number AndString {
int x;
string str;
}
sequence<string> StringSeq;
di ctionary<long, StringSeq> StringTabl e;
interface dientToServer {
void opl(int i, float f, bool b, string s);
voi d op2(Nunber AndString ns, StringSeq ss, StringTable st);

voi d op3(dient ToServer* proxy);
b

The Slice compiler generates the following code for this definition:

C++

struct Nunmber AndString {

lce::Int Xx;
std::string str;
/1

b
typedef std::vector<std::string> StringSeq;
typedef std::map<lce::Long, StringSeq> StringTable;

nanespace | ceProxy {
class dientToServer : virtual public IceProxy::lce::Object {
public:
void opl(lce::Int, lce::Float, bool, const std::string&);
voi d op2(const Number AndString& const StringSeq& const StringTabl e&);
voi d op3(const CientToServerPrx&);
Il

Given a proxy to a Cl i ent ToSer ver interface, the client code can pass parameters as in the following example:

Copyright © 2017, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

ClientToServerPrx p = ...; /1 Get proxy...

p->o0p1(42, 3.14, true, "Hello world!"); // Pass sinple literals

int i = 42;

float f = 3.14;

bool b = true;

string s = "Hello world!";

p->opl(i, f, b, s); /1 Pass sinple variables

Nunber AndString ns = { 42, "The Answer" };
StringSeq ss;

ss. push_back("Hello world!");

StringTabl e st;

st[0] = ss;
p- >op2(ns, ss, st); /1 Pass conpl ex variabl es
p->op3(p); /| Pass proxy

You can pass either literals or variables to the various operations. Because everything is passed by value or const reference, there are no memory-
management issues to consider.

Out-Parameters in C++

The C++ mapping passes out-parameters by reference. Here is the Slice definition once more, modified to pass all parameters in the out direction:

Slice

struct Nunmber AndString {
int x;
string str;

b
sequence<string> StringSeq;
di ctionary<long, StringSeq> StringTabl e;

interface ServerTodient {
void opl(out int i, out float f, out bool b, out string s);
voi d op2(out Nunber AndString ns, out StringSeq ss, out StringTable st);
voi d op3(out ServerTod ient* proxy);

1

The Slice compiler generates the following code for this definition:

C++

nanmespace |ceProxy {
class ServerTodient : virtual public IceProxy::lce::Object {
public:
void opl(lce::Int& Ice::Float& bool& std::string&);
voi d op2(Nunber AndStri ng&, StringSeq& StringTableg&);
voi d op3(ServerTod ientPrx&);
11

3

Copyright © 2017, ZeroC, Inc.

Ice 3.4.2 Documentation

Given a proxy to a Server ToCl i ent interface, the client code can pass parameters as in the following example:

C++

ServerTodientPrx p = ...; Il Get proxy...

int i;
float f;
bool b;
string s;

p->opl(i, f, b, s);
/1 i, f, b, and s contain updated val ues now

Nunber AndString ns;
StringSeq ss;
StringTabl e st;

p- >op2(ns, ss, st);
/1 ns, ss, and st contain updated val ues now

p->0p3(p);
/1 p has changed now

Again, there are no surprises in this code: the caller simply passes variables to an operation; once the operation completes, the values of those
variables will be set by the server.

It is worth having another look at the final call:

C++

p->op3(p); /1 Weird, but well ?defined

Here, p is the proxy that is used to dispatch the call. That same variable p is also passed as an out-parameter to the call, meaning that the server will
set its value. In general, passing the same parameter as both an input and output parameter is safe: the Ice run time will correctly handle all locking
and memory-management activities.

Another, somewhat pathological example is the following:

Slice

sequence<i nt > Row,
sequence<Row> Matri Xx;

interface MatrixArithnetic {
void multiply(Matrix ml, Matrix n2, out Matrix result);

}

Given a proxy to a Mat ri xAri t hret i c interface, the client code could do the following:

C++

Matri xArithnmeticPrx ma = ...; /1 Get proxy...

Matrix mL = ...; // Initialize one matrix
Matrix n2 = ...; /Il Initialize second matrix

ma- >squar eAndCubeRoot (nl, n2, ml); // !!!

Copyright © 2017, ZeroC, Inc.

Ice 3.4.2 Documentation

This code is technically legal, in the sense that no memory corruption or locking issues will arise, but it has surprising behavior: because the same
variable il is passed as an input parameter as well as an output parameter, the final value of nl is indeterminate — in particular, if client and server
are collocated in the same address space, the implementation of the operation will overwrite parts of the input matrix ml in the process of computing
the result because the result is written to the same physical memory location as one of the inputs. In general, you should take care when passing the
same variable as both an input and output parameter and only do so if the called operation guarantees to be well-behaved in this case.

Chained Invocations in C++

Consider the following simple interface containing two operations, one to set a value and one to get it:

Slice

interface Nanme {
string getName();
voi d set Name(string nane);

I
Suppose we have two proxies to interfaces of type Nane, p1 and p2, and chain invocations as follows:

C++
p2- >set Name(pl- >get Name());

This works exactly as intended: the value returned by p1 is transferred to p2. There are no memory-management or exception safety issues with this
code.

Exception Handling in C++

Any operation invocation may throw a run-time exception and, if the operation has an exception specification, may also throw user exceptions.
Suppose we have the following simple interface:

Slice

exception Tantrum {
string reason;

1

interface Child {
voi d askTod eanUp() throws Tantrum

3

Slice exceptions are thrown as C++ exceptions, so you can simply enclose one or more operation invocations in a t r y- cat ch block:

C++
ChildPrx child = ...; /Il Get proxy...
try {

chi | d- >askToCd eanUp() ; /1 Gve it atry...
} catch (const Tantrum& t) {

cout << "The child says: " << t.reason << endl;
}

Typically, you will catch only a few exceptions of specific interest around an operation invocation; other exceptions, such as unexpected run-time
errors, will typically be dealt with by exception handlers higher in the hierarchy. For example:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/viewpage.action?pageId=5047911#C++MappingforExceptions-RuntimeException
https://doc.zeroc.com/pages/viewpage.action?pageId=5047911#C++MappingforExceptions-UserException

Ice 3.4.2 Documentation

C++
voi d run()
{
ChildPrx child = ...; /] Get proxy...
try {
chil d->askToC eanUp(); // Gve it atry...
} catch (const Tantrum& t) {
cout << "The child says: " << t.reason << endl;
chil d->scol d(); /1 Recover fromerror...
}
chil d->praise(); /1l Gve positive feedback. ..
}
int
mai n(int argc, char* argv[])
{
int status = 1;
try {
I
run();
I
status = O;
} catch (const Ice::Exception& e) {
cerr << "Unexpected run?time error: " << e << endl;
}
I
return status;
}

This code handles a specific exception of local interest at the point of call and deals with other exceptions generically. (This is also the strategy we
used for our first simple application.)

For efficiency reasons, you should always catch exceptions by const reference. This permits the compiler to avoid calling the exception's copy
constructor (and, of course, prevents the exception from being sliced to a base type).

Exceptions and Out-Parameters in C++

The Ice run time makes no guarantees about the state of out-parameters when an operation throws an exception: the parameter may have still have
its original value or may have been changed by the operation's implementation in the target object. In other words, for out-parameters, Ice provides
the weak exception guarantee [1] but does not provide the strong exception guarantee.

@ This is done for reasons of efficiency: providing the strong exception guarantee would require more overhead than can be justified.

Exceptions and Return Values in C++

For return values, C++ provides the guarantee that a variable receiving the return value of an operation will not be overwritten if an exception is
thrown. (Of course, this guarantee holds only if you do not use the same variable as both an out-parameter and to receive the return value of an
invocation).

See Also

® QOperations
® Slice for a Simple File System
® C++ Mapping for Interfaces

References

1. Sutter, H. 1999. Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solutions. Reading, MA: Addison-Wesley.

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Hello+World+Application
https://doc.zeroc.com/display/Ice34/Operations
https://doc.zeroc.com/display/Ice34/Slice+for+a+Simple+File+System
https://doc.zeroc.com/pages/viewpage.action?pageId=5047914
http://amzn.com/0201615622

	C++ Mapping for Operations

