
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

C++ Mapping for Built-In Types
On this page:

Mapping of Slice Built-In Types to C++ Types
Alternative String Mapping for C++

Mapping of Slice Built-In Types to C++ Types
The Slice are mapped to C++ types as shown in this table:built-in types

Slice C++

bool bool

byte Ice::Byte

short Ice::Short

int Ice::Int

long Ice::Long

float Ice::Float

double Ice::Double

string std::string

Slice and map to C++ and . The remaining built-in Slice types map to C++ type definitions instead of C++ native bool string bool std::string
types. This allows the Ice run time to provide a definition as appropriate for each target architecture. (For example, might be defined as Ice::Int lo

 on one architecture and as on another.)ng int

All the basic types are guaranteed to be distinct C++ types, that is, you can safely overload functions that differ in only the types listed in the table
above.

Alternative String Mapping for C++
You can use a metadata directive, , to map strings to C++ . This is useful for applications that use ["cpp:type:wstring"] std::wstring
languages with alphabets that cannot be represented in 8?bit characters. The metadata directive can be applied to any Slice construct. For
containers (such as modules, interfaces, or structures), the metadata directive applies to all strings within the container. A corresponding metadata
directive, , can be used to selectively override the mapping defined by the enclosing container. For example:["cpp:type:string"]

Note that is a typedef for . This guarantees that byte values are always in the range 0..255.Ice::Byte unsigned char

https://doc.zeroc.com/display/Ice34/Basic+Types

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

Slice

["cpp:type:wstring"]
struct S1 {
 string x; // Maps to std::wstring
 ["cpp:type:wstring"]
 string y; // Maps to std::wstring
 ["cpp:type:string"]
 string z; // Maps to std::string
};

struct S2 {
 string x; // Maps to std::string
 ["cpp:type:string"]
 string y; // Maps to std::string
 ["cpp:type:wstring"]
 string z; // Maps to std::wstring
};

With these metadata directives, the strings are mapped as indicated by the comments. By default, narrow strings are encoded as UTF?8, and wide
strings use Unicode in an encoding that is appropriate for the platform on which the application executes. You can override the encoding for narrow
and wide strings by registering a with the Ice run time.string converter

See Also

Basic Types
C++ Mapping for Identifiers
C++ Mapping for Modules
C++ Mapping for Enumerations
C++ Mapping for Structures
C++ Mapping for Sequences
C++ Mapping for Dictionaries
C++ Mapping for Constants
C++ Mapping for Exceptions
C++ Strings and Character Encoding

https://doc.zeroc.com/pages/viewpage.action?pageId=5048091
https://doc.zeroc.com/display/Ice34/Basic+Types
https://doc.zeroc.com/pages/viewpage.action?pageId=5047920
https://doc.zeroc.com/pages/viewpage.action?pageId=5047923
https://doc.zeroc.com/pages/viewpage.action?pageId=5047917
https://doc.zeroc.com/pages/viewpage.action?pageId=5047919
https://doc.zeroc.com/pages/viewpage.action?pageId=5047915
https://doc.zeroc.com/pages/viewpage.action?pageId=5047918
https://doc.zeroc.com/pages/viewpage.action?pageId=5047924
https://doc.zeroc.com/pages/viewpage.action?pageId=5047911
https://doc.zeroc.com/pages/viewpage.action?pageId=5048091

	C++ Mapping for Built-In Types

