
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Data Encoding for Classes
The marshaling for is complex, due to the need to deal with the pointer semantics for graphs of classes, as well as the need for the receiver classes
to slice or preserve classes of unknown derived type. In addition, the marshaling for classes uses a compression scheme to avoid repeatedly type ID
marshaling the same type IDs for large graphs of class instances.

Encoding for Class References
Consider the following Slice definitions:

Slice

class Node {
 int value;
 Node next;
};

struct S {
 Node obj;
};

We call the member a to a class instance. References can appear as data members, as in the case of above, or nested inside of obj reference obj
other types, such as a sequence element or dictionary value. There are significant differences in the encoding for references between versions 1.0
and 1.1.

Class Reference Encoding version 1.0

Ice encodes a nil reference as a 32-bit integer with value zero. For non-nil references, the encoder maintains a table per that encapsulation
associates a unique non-zero positive integer with each class instance. We refer to this integer as an . The first time the encoder instance ID
encounters a reference to a particular instance, it assigns the instance an unused ID, inserts it into the table, and encodes the reference as a 32-bit
integer whose value is the of the ID. If the encoder has already encountered that instance, it simply encodes the instance's previously-negative
assigned ID as a negative 32-bit integer.

All are encoded at the end of the encapsulation.class instances

Class Reference Encoding version 1.1

As in version 1.0 of the encoding, each instance is assigned a unique ID per encapsulation. However, to conserve space, version 1.1 encodes a
reference as a value, with a nil reference encoded as a size value of zero and a non-nil reference encoded as a positive size value. The size
encoding reserves ID value zero to denote a nil reference, and ID value 1 to denote an instance in which an instance's state is marshaled at the inline
point of its first reference. Consequently, instance IDs must start at 2. The encoding assigns instance IDs sequentially in order of appearance, with
the first instance assigned an ID of 2, the next instance has ID 3, and so on.

The encoding for a reference depends on the being used, and may also depend on the context in which the reference occurs:format

Compact format
In this format, the encoding always uses the inline scheme. Suppose we are encoding a value of the structure type shown earlier. If its S obj
 member refers to a class instance that the encoder has not yet encountered in the current encapsulation, the encoding assigns it the next
available sequential ID, marshals a size with value 1 signifying that an instance is about to be written, and then immediately marshals the
instance itself. Any subsequent reference to the same instance is encoded as a size whose value is the instance's corresponding ID.

Sliced format
When a reference occurs the context of a class instance, Ice uses the same inline scheme as in the compact format. For example, outside
suppose a Slice operation declared a parameter of structure type shown above. When marshaling this parameter, its member is S obj
encoded as a size with value 1, followed by the encoding of the instance itself. Now consider the marshaling of the instance, Node Node
where we encounter a class reference in member that occurs the context of a class instance. To assist the Ice run time in next inside
unmarshaling and remarshaling instances, such a reference is encoded as a size whose value is an index into an .indirection table

Encoding for Class Instances

https://doc.zeroc.com/display/Ice35/Classes
https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Basic+Data+Encoding#BasicDataEncoding-encapsulation
https://doc.zeroc.com/display/Ice35/Basic+Data+Encoding#BasicDataEncoding-size
https://doc.zeroc.com/display/Ice35/Understanding+Objects+and+Exceptions#UnderstandingObjectsandExceptions-format

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

It is important to understand the distinction between marshaling a reference and marshaling an instance. In C++ terms, this is equivalent to the
difference between a pointer and the heap data containing an object's state at which the pointer is pointing. Marshaling an instance means we are
encoding the data members of a class instance.

Class Instance Encoding version 1.0

Classes are marshaled as a number of pairs containing a type ID and a (one pair for each level of the inheritance hierarchy) and marshaled in slice
derived-to-base order. Only data members are marshaled — no information is sent that would relate to operations. Each marshaled class instance is
preceded by a (non-zero) positive integer that provides an identity for the instance. The sender assigns this identity during marshaling such that each
marshaled instance has a different identity. The receiver uses that identity to correctly reconstruct graphs of classes. The overall marshaling format
for classes is shown below:

Marshaling format for classes.

Prior to ending an encapsulation, the sender must encode all instances referenced within that encapsulation in an object table. The encoding may
require multiple passes: as the sender processes an instance in the current pass, it may encounter additional instances to be processed in a
subsequent pass. For each pass, the sender encodes a denoting the number of objects in the pass. To signify that all instances have been size
encoded, the sender must marshal a size value of zero.

This object table must be written if any operation parameter or data member has a class type, even if all references are nil.

Class Instance Encoding version 1.1

The leading byte of a class instance is a value of 1. Following this byte is a collection of arranged in derived-to-base order. Only data size slices
members are marshaled — no information is sent that would relate to operations. The initial (most-derived) slice always includes a that may type ID
be encoded as a string or as a numeric value, as specified by the flags that begin each slice. Depending on the being used, subsequent slices format
may or may not include a type ID.

Each slice consists of a leading byte representing the slice flags, an optional type ID, an optional slice size, the required members for that slice in
order of declaration, and the of that slice. The sender must set the appropriate slice flags to indicate whether the slice includes a optional members
type ID, size, and optional data members, and whether this is the last slice of the instance. The compact format only includes a type ID in the initial
(most-derived) slice and omits the slice size, as shown in the following diagram:

https://doc.zeroc.com/display/Ice35/Basic+Data+Encoding#BasicDataEncoding-slice
https://doc.zeroc.com/display/Ice35/Basic+Data+Encoding#BasicDataEncoding-size
https://doc.zeroc.com/display/Ice35/Basic+Data+Encoding#BasicDataEncoding-size
https://doc.zeroc.com/display/Ice35/Basic+Data+Encoding#BasicDataEncoding-slice
https://doc.zeroc.com/display/Ice35/Data+Encoding+for+Class+Type+IDs
https://doc.zeroc.com/display/Ice35/Understanding+Objects+and+Exceptions#UnderstandingObjectsandExceptions-format
https://doc.zeroc.com/display/Ice35/Data+Encoding+for+Optional+Values

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

Compact format for classes.

When using the sliced format, a type ID is included in every slice, along with a slice size:

Sliced format for classes.

A slice that contains at least one non-nil class reference must use an for all references in that slice. The table is an array of instances indirection table
encoded using the inline scheme. A leading size value indicates the number of elements in the table; each element is either an instance ID (if the
instance has already been encoded within the current encapsulation), or the instance itself denoted by a leading size of 1. The indirection table
appears in the encoding immediately following the required and optional data members, .but is not included in the byte count denoted by the slice size
To skip a slice for an unknown type, the receiver can advance the input stream by the number of bytes specified in the slice size, but then must
process all references or instances in the indirection table, if one is present.

To support for an instance, the receiver must temporarily retain the slices of any unknown derived types, and also be able to slice preservation
reconstruct the indirection table in its original order for each of these slices in case the instance is later remarshaled.

See Also

Classes
Type IDs
Data Encoding for Exceptions

https://doc.zeroc.com/display/Ice35/Data+Encoding+for+Class+Graphs#DataEncodingforClassGraphs-indirectio
https://doc.zeroc.com/display/Ice35/Understanding+Objects+and+Exceptions#UnderstandingObjectsandExceptions-preserv
https://doc.zeroc.com/display/Ice35/Classes
https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Data+Encoding+for+Exceptions

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

Basic Data Encoding
Understanding Objects and Exceptions

https://doc.zeroc.com/display/Ice35/Basic+Data+Encoding
https://doc.zeroc.com/display/Ice35/Understanding+Objects+and+Exceptions

	Data Encoding for Classes

