Ice 3.5.1 Documentation

Example of a File System Server in Python

This page presents the source code for a Python server that implements our file system and communicates with the client we wrote earlier.

The server is remarkably free of code that relates to distribution: most of the server code is simply application logic that would be present just the
same as a non-distributed version. Again, this is one of the major advantages of Ice: distribution concerns are kept away from application code so
that you can concentrate on developing application logic instead of networking infrastructure.

On this page:

® |Implementing a File System Server in Python
® Server Main Program in Python
O Filel Servant Class in Python
© Directoryl Servant Class in Python
© Directoryl Data Members in Python
© Directoryl Constructor in Python
o Directoryl Methods in Python
® Thread Safety in Python

Implementing a File System Server in Python

We have now seen enough of the server-side Python mapping to implement a server for our file system. (You may find it useful to review these Slice
definitions before studying the source code.)

Our server is implemented in a single source file, Ser ver . py, containing our server's main program as well as the definitions of our Di r ect ory and
Fi | e servant subclasses.

Server Main Program in Python

Our server main program uses the | ce. Appl i cat i on class. The r un method installs a signal handler, creates an object adapter, instantiates a few
servants for the directories and files in the file system, and then activates the adapter. This leads to a main program as follows:

Python

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Slice+for+a+Simple+File+System
https://doc.zeroc.com/display/Ice35/Example+of+a+File+System+Client+in+Python
https://doc.zeroc.com/display/Ice35/Slice+for+a+Simple+File+System
https://doc.zeroc.com/display/Ice35/The+Server-Side+main+Program+in+Python#TheServerSidemainPrograminPython-application

Ice 3.5.1 Documentation

inport sys, threading, lce, Filesystem

Directoryl servant class ...
Filel servant class ...

class Server(lce.Application):
def run(self, args):
Term nate cleanly on receipt of a signal
#
sel f. shut downOnl nterrupt ()

Create an object adapter (stored in the _adapter

static menbers)

#

adapter = sel f.comuni cator().createObject Adapt er Wt hEndpoi nt s(
"Si npl eFi | esystent, "default -p 10000")

Directoryl._adapter = adapter

Filel._adapter = adapter

Create the root directory (with nane "/" and no parent)
#
root = Directoryl("/", None)

Create a file called "READVE" in the root directory
#
file Fil el (" README", root)
text = ["This file systemcontains a collection of poetry."]
try:
file.wite(text)
except Filesystem GenericError, e:
print e.reason

Create a directory called "Col eridge"
in the root directory

#

coleridge = Directoryl ("Col eridge", root)

Create a file called "Kubla_Khan"
in the Coleridge directory

#

file = Filel("Kubla_Khan", coleridge)

text = ["In Xanadu di d Kubl a Khan",
"A stately pleasure-donme decree:",
"Where Al ph, the sacred river, ran",
"Through caverns neasurel ess to man",
"Down to a sunless sea."]

try:

file.wite(text)
except Filesystem GenericError, e:
print e.reason

Al objects are created, allow client requests now
#

adapter. activate()

Wait until we are done

#

sel f. conmuni cat or () . wai t For Shut down()

if self.interrupted():
print self.appNanme() + ": term nating"

return O

app = Server()
sys. exit (app. mai n(sys. argv))

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

The code defines the Ser ver class, which derives from | ce. Appl i cat i on and contains the main application logic in its r un method. Much of this
code is boiler plate that we saw previously: we create an object adapter, and, towards the end, activate the object adapter and call wai t For Shut dow

The interesting part of the code follows the adapter creation: here, the server instantiates a few nodes for our file system to create the structure
shown below:

Yy (’“\1 RootDir

\ = Directo

/ \
. = File _)f \x\.

Coleridge |) .README
o

Kubla-Khan

A small file system.

As we will see shortly, the servants for our directories and files are of type Di rect oryl and Fi | el , respectively. The constructor for either type of
servant accepts two parameters, the name of the directory or file to be created and a reference to the servant for the parent directory. (For the root
directory, which has no parent, we pass None.) Thus, the statement

Python

root = Directoryl("/", None)

creates the root directory, with the name "/ " and no parent directory.

Here is the code that establishes the structure in the above illustration:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

Python

Create the root directory (with nanme "/" and no parent)
#
root = Directoryl("/", None)

Create a file called "READVE" in the root directory
#
file = Filel ("READVE", root)
t ext ["This file systemcontains a collection of poetry."]
try:
file.wite(text)
except Filesystem GenericError, e:
print e.reason

Create a directory called "Col eri dge"
in the root directory

#

coleridge = Directoryl ("Col eridge", root)

Create a file called "Kubla_Khan"
in the Coleridge directory
#
file = Filel("Kubla_Khan", coleridge)
text = ["In Xanadu did Kubla Khan",
"A stately pleasure-done decree:",
"Where Al ph, the sacred river, ran",
"Through caverns neasurel ess to man",
"Down to a sunless sea."]
try:
file.wite(text)
except Filesystem GenericError, e:
print e.reason

We first create the root directory and a file READVE within the root directory. (Note that we pass a reference to the root directory as the parent when
we create the new node of type Fi | el .)

The next step is to fill the file with text:

Python

text = ["This file systemcontains a collection of poetry."]
try:

file.wite(text)
except Filesystem GenericError, e:

print e.reason

Recall that Slice sequences map to Python lists. The Slice type Li nes is simply a list of strings; we add a line of text to our README file by initializing
the t ext list to contain one element.

Finally, we call the Slice wri t e operation on our Fi | el servant by simply writing:

Python

file.wite(text)

This statement is interesting: the server code invokes an operation on one of its own servants. Because the call happens via a reference to the
servant (of type Fi | el) and not via a proxy (of type Fi | ePr x), the Ice run time does not know that this call is even taking place — such a direct call
into a servant is not mediated by the Ice run time in any way and is dispatched as an ordinary Python method call.

In similar fashion, the remainder of the code creates a subdirectory called Col er i dge and, within that directory, a file called Kubl a_Khan to
complete the structure in the above illustration.

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Python+Mapping+for+Sequences

Ice 3.5.1 Documentation

Fi | el Servant Class in Python

Our Fi | el servant class has the following basic structure:

Python

class Filel (FilesystemFile):
Constructor and operations here...

_adapter = None

The class has a number of data members:

® _adapter
This class member stores a reference to the single object adapter we use in our server.

® _nane
This instance member stores the name of the file incarnated by the servant.

L]
_parent
This instance member stores the reference to the servant for the file's parent directory.

® _lines
This instance member holds the contents of the file.

The _nane, _parent, and _| i nes data members are initialized by the constructor:

Python

def __init_ (self, nanme, parent):
sel f. _nanme = nane
sel f._parent = parent
self. _lines =[]

assert(self._parent != None)

Create an identity

#

nylD = Ice.ldentity()

nyl D. name = | ce. gener at eUUl ()

Add ourself to the object adapter
#
sel f. _adapter.add(self, nylD)

Create a proxy for the new node and

add it as a child to the parent

#

t hi sNode = Fil esyst em NodePr x. uncheckedCast (sel f._adapt er. creat eProxy(nyl D))
sel f. _parent.addChi | d(t hi sNode)

After initializing the instance members, the code verifies that the reference to the parent is not None because every file must have a parent directory.
The constructor then generates an identity for the file by calling | ce. gener at eUUI D and adds itself to the servant map by calling Cbj ect Adapt er.
add. Finally, the constructor creates a proxy for this file and calls the addChi | d method on its parent directory. addChi | d is a helper function that a
child directory or file calls to add itself to the list of descendant nodes of its parent directory. We will see the implementation of this function in Di r ect
oryl Methods.

The remaining methods of the Fi | el class implement the Slice operations we defined in the Node and Fi | e Slice interfaces:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

Python

Slice Node::nanme() operation

def nane(self, current=None):
return sel f._nane

Slice File::read() operation

def read(self, current=None):
return self._lines

Slice File::wite() operation
def wite(self, text, current=None):

self._lines = text

The nane method is inherited from the generated Node class. It simply returns the value of the _nane instance member.

The r ead and wr i t e methods are inherited from the generated Fi | e class and simply return and set the _I i nes instance member.

Di rect oryl Servant Class in Python

The Di rect oryl class has the following basic structure:

Python

class Directoryl (FilesystemDirectory):
Constructor and operations here...

_adapter = None

Di rect oryl Data Members in Python

As for the Fi | el class, we have data members to store the object adapter, the name, and the parent directory. (For the root directory, the _par ent
member holds None.) In addition, we have a _cont ent s data member that stores the list of child directories. These data members are initialized by
the constructor:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

Python

def __init__(self, nane, parent):
sel f. _nane = nane
sel f._parent = parent
self._contents =[]

Create an identity. The
parent has the fixed identity "RootDir"
#
nmylD = Ice.ldentity()
if(self._parent):
nyl D. nane = | ce. generateUU D)
el se:
nyl D.nane = "RootDir"

Add ourself to the object adapter

Zel f._adapter.add(self, nylD)

Create a proxy for the new node and

add it as a child to the parent

fhi sNode = Fil esyst em NodePr x. uncheckedCast (sel f._adapter. createProxy(nyl D))

if self._parent:
sel f. _parent.addChil d(thi sNode)

Di rect oryl Constructor in Python

The constructor creates an identity for the new directory by calling | ce. gener at eUUl D. (For the root directory, we use the fixed identity " Root Di r .
) The servant adds itself to the servant map by calling Obj ect Adapt er . add and then creates a proxy to itself and passes it to the addChi | d helper
function.

Di rect oryl Methods in Python
addChi | d simply adds the passed reference to the _cont ent s list:
Python

def addChild(self, child):
sel f. _contents. append(child)

The remainder of the operations, name and | i st , are trivial:

Python

def nane(self, current=None):
return sel f._nane

def list(self, current=None):
return self._contents

Thread Safety in Python

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

The server code we have written so far is not quite correct as it stands: if two clients access the same file in parallel, each via a different thread, one
thread may read the _| i nes data member while another thread updates it. Obviously, if that happens, we may write or return garbage or, worse,
crash the server. However, we can make the r ead and wr i t e operations thread-safe with a few trivial changes to the Fi | el class:

Python

def __init__(self, nanme, parent):
sel f._name = nane
sel f._parent = parent
self._lines =[]
sel f. _nmutex = threading. Lock()

...

def nane(self, current=None):
return self. _nane

def read(self, current=None):
sel f. _nutex.acquire()
lines = self._lines[:] # Copy the Ilist
sel f. _nutex. rel ease()
return |ines

def wite(self, text, current=None):
sel f. _nutex. acquire()
self._lines = text
sel f. _nutex.rel ease()

We modified the constructor to add the instance member _nut ex, and then enclosed our r ead and wr i t e implementations in a critical section. (The
nanme method does not require a critical section because the file's name is immutable.)

No changes for thread safety are necessary in the Di r ect or yl class because the Di r ect or y interface, in its current form, defines no operations
that modify the object.

See Also

Slice for a Simple File System
Python Mapping for Sequences
Example of a File System Client in Python

L]
L
L]
® The Server-Side main Program in Python

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Slice+for+a+Simple+File+System
https://doc.zeroc.com/display/Ice35/Python+Mapping+for+Sequences
https://doc.zeroc.com/display/Ice35/Example+of+a+File+System+Client+in+Python
https://doc.zeroc.com/display/Ice35/The+Server-Side+main+Program+in+Python

	Example of a File System Server in Python

