
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

The Server-Side main Function in Objective-C
This page discusses how to initialize and finalize the server-side run time.

On this page:

Initializing and Finalizing the Server-Side Run Time
Alternative Ways to Create a Communicator in Objective-C

Initializing and Finalizing the Server-Side Run Time
The main entry point to the Ice run time is represented by the local interface . As for the client side, you must initialize the Ice run ICECommunicator
time by calling (a class method of the class) before you can do anything else in your server. createCommunicator ICEUtil createCommunicat

 returns an instance of type :or id<ICECommunicator>

Objective-C

int
main(int argc, char* argv[])
{
 // ...
 id<ICECommunicator> communicator = [ICEUtil createCommunicator:&argc argv:argv];
 // ...
}

createCommunicator accepts a to as well as . The class method scans the argument vector for any that pointer argc argv command-line options
are relevant to the Ice run time; any such options are removed from the argument vector so, when returns, the only options createCommunicator
and arguments remaining are those that concern your application. If anything goes wrong during initialization, throws an createCommunicator
exception.

Before leaving your function, you call . The operation is responsible for finalizing the Ice run time. main must Communicator::destroy destroy
In particular, waits for any operation implementations that are still executing in the server to complete. In addition, ensures that destroy destroy
any outstanding threads are joined with and reclaims a number of operating system resources, such as file descriptors and memory. Never allow
your function to terminate without calling first; doing so has undefined behavior.main destroy

The general shape of our server-side function is therefore as follows:main

https://doc.zeroc.com/display/Ice34/Setting+Properties+on+the+Command+Line

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

Objective-C

#import <Ice/Ice.h>

int
main(int argc, char* argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 int status = 1;
 id<ICECommunicator> communicator = nil;
 @try {
 communicator = [ICEUtil createCommunicator:&argc argv:argv];

 // Server code here...

 status = 0;
 } @catch (NSException* ex) {
 NSLog(@"%@", ex);
 }

 @try {
 [communicator destroy];
 } @catch (NSException* ex) {
 NSLog(@"%@", ex);
 }

 [pool release];
 return status;
}

Note that the code places the call to into a block and takes care to return the correct exit status to the operating system. createCommunicator try
Also note that the code creates and releases an autorelease pool. This ensures that memory will be released before the program terminates.

The handler for ensures that the communicator is destroyed regardless of whether the program terminates normally or due to catch NSException
an exception.

You must release the communicator that is returned by . As for any operation that returns a pointer, the Ice run time calls not createCommunicator
 on the returned instance, so you do not have to release it yourself.autorelease

Alternative Ways to Create a Communicator in Objective-C
createCommunicator is provided in several versions that accept different arguments. Here is the complete list:

(id<ICECommunicator>) createCommunicator: (int*)argc argv:(char*[])argv itData:(ICEInitializationData*)
initData;
This is the designated initializer — the remaining versions of are implemented in terms of this initializer. As for the createCommunicator
version we saw in the preceding section, this version accepts a pointer to as well as and removes Ice-related argc argv command-line

 from the argument vector. The argument allows you to pass additional initialization information to the Ice run time (see options initData
below).

+(id<ICECommunicator>) createCommunicator;
This is equivalent to calling:
[ICEUtil createCommunicator:nil argv:nil initData:nil];

+(id<ICECommunicator>) createCommunicator: (int*)argc argv:(char*[])argv;
This is equivalent to calling
[ICEUtil createCommunicator:&argc argv:argv initData:nil];

This is also the reason why is not called (as it is for other language mappings) — createCommunicator initialize initialize
would suggest that the return value must be released because the method name begins with .init

https://doc.zeroc.com/display/Ice34/Setting+Properties+on+the+Command+Line
https://doc.zeroc.com/display/Ice34/Setting+Properties+on+the+Command+Line

Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

+(id<ICECommunicator>) createCommunicator: (ICEInitializationData*)initData
This is equivalent to calling
[ICEUtil createCommunicator:nil argv:nil initData:initData];

The argument is of type . Even though it has no Slice definition, this class behaves as if it were a Slice initData ICEInitializationData
structure with the following definition:

Slice

#include <Properties.ice>
#include <Logger.ice>

["objc:prefix:ICE"]
module Ice {
 dictionary<string, string> PrefixDict;

 local struct InitializationData {
 Ice::Properties properties;
 Ice::Logger logger;
 };
};

The member allows you to explicitly set for the communicator to be created. This is useful, for example, if you want to properties property values
ensure that a particular property setting is always used by the communicator.

The member sets the that the Ice run time uses to log messages. If you do not set a logger (leaving the member as), the logger logger logger nil
run time installs a default logger that calls to log messages.NSLog

See Also

Communicator Initialization
Properties and Configuration
Logger Facility

https://doc.zeroc.com/display/Ice34/Communicator+Initialization
https://doc.zeroc.com/display/Ice34/Properties+and+Configuration
https://doc.zeroc.com/display/Ice34/Logger+Facility
https://doc.zeroc.com/display/Ice34/Communicator+Initialization
https://doc.zeroc.com/display/Ice34/Properties+and+Configuration
https://doc.zeroc.com/display/Ice34/Logger+Facility

	The Server-Side main Function in Objective-C

