
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Java Mapping for Exceptions
On this page:

Java Mapping for User Exceptions
Java Constructors for User Exceptions
Java Mapping for Run-Time Exceptions

Java Mapping for User Exceptions
Here is a fragment of the once more:Slice definition for our world time server

Slice

exception GenericError {
 string reason;
};
exception BadTimeVal extends GenericError {};
exception BadZoneName extends GenericError {};

These exception definitions map as follows:

Java

public class GenericError extends Ice.UserException {
 public String reason;

 public GenericError() {}

 public GenericError(Throwable cause)
 {
 super(cause);
 }

 public GenericError(String reason)
 {
 this.reason = reason;
 }

 public GenericError(String reason, Throwable cause)
 {
 super(cause);
 this.reason = reason;
 }

 public String ice_name()
 {
 return "GenericError";
 }
}

public class BadTimeVal extends GenericError {
 public BadTimeVal() {}

 public BadTimeVal(Throwable cause)
 {
 super(cause);
 }

 public BadTimeVal(String reason)
 {

https://doc.zeroc.com/display/Ice35/Proxies

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

 super(reason);
 }

 public BadTimeVal(String reason, Throwable cause)
 {
 super(reason, cause);
 }

 public String ice_name()
 {
 return "BadTimeVal";
 }
}

public class BadZoneName extends GenericError {
 public BadZoneName() {}

 public BadZoneName(Throwable cause)
 {
 super(cause);
 }

 public BadZoneName(String reason)
 {
 super(reason);
 }

 public BadZoneName(String reason, Throwable cause)
 {
 super(reason, cause);
 }

 public String ice_name()
 {
 return "BadZoneName";
 }
}

Each Slice exception is mapped to a Java class with the same name. For each data member, the corresponding class contains a public data
member. (Obviously, because and do not have members, the generated classes for these exceptions also do not have BadTimeVal BadZoneName
members.) A is used for optional data members, and you can to force required members to use this JavaBean-style API customize the mapping
same API.

The inheritance structure of the Slice exceptions is preserved for the generated classes, so and inherit from BadTimeVal BadZoneName GenericEr
.ror

Each exception also defines the member function, which returns the name of the exception.ice_name

All user exceptions are derived from the base class . This allows you to catch all user exceptions generically by installing a Ice.UserException
handler for . , in turn, derives from .Ice.UserException Ice.UserException java.lang.Exception

Ice.UserException implements a method that is inherited by its derived exceptions, so you can make memberwise shallow copies of clone
exceptions.

Note that the generated exception classes contain other member functions that are not shown. However, those member functions are internal to the
Java mapping and are not meant to be called by application code.

Java Constructors for User Exceptions
An exception has a default constructor that default-constructs each data member. This means the constructor initializes members of primitive type to
the equivalent of zero, and members of reference type to null. Note that applications must always explicitly initialize members of structure and
enumerated types because the Ice run time does not accept null as a legal value for these types.

If you wish to ensure that data members of primitive and enumerated types are initialized to specific values, you can declare default values in your Slic
. The default constructor initializes each of these data members to its declared value.e definition

https://doc.zeroc.com/display/Ice35/Java+Mapping+for+Optional+Data+Members
https://doc.zeroc.com/display/Ice35/Customizing+the+Java+Mapping#CustomizingtheJavaMapping-bean
https://doc.zeroc.com/display/Ice35/User+Exceptions
https://doc.zeroc.com/display/Ice35/User+Exceptions

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

If an exception declares or inherits any data members, the generated class provides a second constructor that accepts one parameter for each data
member so that you can construct and initialize an instance in a single statement (instead of first having to construct the instance and then assign to
its members). For a derived exception, this constructor accepts one argument for each base exception member, plus one argument for each derived
exception member, in base-to-derived order.

The generated class may include an additional constructor if the exception declares or inherits any .optional data members

The Slice compiler generates overloaded versions of all constructors that accept a trailing argument for preserving an exception chain.Throwable

Java Mapping for Run-Time Exceptions
The Ice run time throws run-time exceptions for a number of pre-defined error conditions. All run-time exceptions directly or indirectly derive from Ice

 (which, in turn, derives from)..LocalException java.lang.RuntimeException

Ice.LocalException implements a method that is inherited by its derived exceptions, so you can make memberwise shallow copies of clone
exceptions.

Recall the for user and run-time exceptions. By catching exceptions at the appropriate point in the hierarchy, you can handle inheritance diagram
exceptions according to the category of error they indicate:

Ice.LocalException
This is the root of the inheritance tree for run-time exceptions.

Ice.UserException
This is the root of the inheritance tree for user exceptions.

Ice.TimeoutException
This is the base exception for both operation-invocation and connection-establishment timeouts.

Ice.ConnectTimeoutException
This exception is raised when the initial attempt to establish a connection to a server times out.

For example, a can be handled as , , , or ConnectTimeoutException ConnectTimeoutException TimeoutException LocalException jav
.a.lang.Exception

You will probably have little need to catch run-time exceptions as their most-derived type and instead catch them as ; the fine-LocalException
grained error handling offered by the remainder of the hierarchy is of interest mainly in the implementation of the Ice run time. Exceptions to this rule
are the exceptions related to and life cycles, which you may want to catch explicitly. These exceptions are facet object FacetNotExistException
and , respectively.ObjectNotExistException

See Also

User Exceptions
Run-Time Exceptions
Java Mapping for Modules
Java Mapping for Built-In Types
Java Mapping for Enumerations
Java Mapping for Structures
Java Mapping for Sequences
Java Mapping for Dictionaries
Java Mapping for Constants
Java Mapping for Optional Data Members
JavaBean Mapping
Facets and Versioning
Object Life Cycle

https://doc.zeroc.com/display/Ice35/Java+Mapping+for+Optional+Data+Members
https://doc.zeroc.com/display/Ice35/Run-Time+Exceptions#RunTimeExceptions-InheritanceHierarchyforExceptions
https://doc.zeroc.com/display/Ice35/Facets+and+Versioning
https://doc.zeroc.com/display/Ice35/Object+Life+Cycle
https://doc.zeroc.com/display/Ice35/User+Exceptions
https://doc.zeroc.com/display/Ice35/Run-Time+Exceptions
https://doc.zeroc.com/display/Ice35/Java+Mapping+for+Modules
https://doc.zeroc.com/display/Ice35/Java+Mapping+for+Built-In+Types
https://doc.zeroc.com/display/Ice35/Java+Mapping+for+Enumerations
https://doc.zeroc.com/display/Ice35/Java+Mapping+for+Structures
https://doc.zeroc.com/display/Ice35/Java+Mapping+for+Sequences
https://doc.zeroc.com/display/Ice35/Java+Mapping+for+Dictionaries
https://doc.zeroc.com/display/Ice35/Java+Mapping+for+Constants
https://doc.zeroc.com/display/Ice35/Java+Mapping+for+Optional+Data+Members
https://doc.zeroc.com/display/Ice35/Customizing+the+Java+Mapping#CustomizingtheJavaMapping-JavaBeanMapping
https://doc.zeroc.com/display/Ice35/Facets+and+Versioning
https://doc.zeroc.com/display/Ice35/Object+Life+Cycle

	Java Mapping for Exceptions

