Ice 3.4.2 Documentation

IcePatch2 Client Utility Library

IcePatch2 includes a pair of C++ classes that simplify the task of writing your own patch client, along with a Microsoft Foundation Classes (MFC)
example that shows how to use these classes. You can find the MFC example in the subdirectory deno/ | cePat ch2/ MFC of your Ice distribution.

The remainder of this section discusses the classes. To incorporate them into a custom patch client, your program must include the header file | cePa
tch2/dientUil.handlink with the | cePat ch2 library.

On this page:
® Performing a Patch
© Constructing a Patcher

© Executing the Patch
® Monitoring Patch Progress

Performing a Patch

The Pat cher class encapsulates all of the patching logic required by a client:

C++

nanmespace |cePatch2 {
class Patcher : ... {
public:

Pat cher (const | ce:: Communi cat or Pt r & conmuni cat or,
const Pat cher FeedbackPt r & f eedback) ;

Pat cher (const Fil eServer Prx& server,
const Pat cher FeedbackPtr & f eedback,
const std::string& databir, bool thorough,
Ice::Int chunkSize, lce::Int renove);

bool prepare();
bool patch(const std::string& dir);

void finish();
b
typedef IlceUtil::Handl e<Patcher> PatcherPtr;
}

Constructing a Patcher

The constructors provide two ways of configuring a Pat cher instance. The first form obtains the following IcePatch2 configuration properties from
the supplied communicator:

® I cePatch2. | nst anceNane
® | cePat ch2. Endpoi nts
® |cePatch2.Directory
® I cePat ch2. Thor ough
® | cePat ch2. ChunkSi ze
® | cePatch2. Renpve
The second constructor accepts arguments that correspond to each of these properties.

Both constructors also accept a Pat cher Feedback object, which allows the client to monitor the progress of the patch.

Executing the Patch

Pat cher provides three methods that reflect the three stages of a patch:

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice34/IcePatch2+Properties

Ice 3.4.2 Documentation

® bhool prepare()

The first stage of a patch includes reading the contents of the checksum file (if present), retrieving the file information from the server, and
examining the local data directory to compose the list of files that require updates. The Pat cher Feedback object is notified incrementally
about each local task and has the option of aborting the patch at any time. This method returns true if patch preparation completed
successfully, or false if the Pat cher Feedback object aborted the patch. If an error occurs, pr epar e raises an exception in the form of a st
d: : string containing a description of the problem.

® bool patch(const std::string& dir)

The second stage of a patch updates the files in the local data directory. If the di r argument is an empty string or " . ", pat ch updates the
entire data directory. Otherwise, pat ch updates only those files whose path names begin with the path in di r . For each file requiring an
update, Pat cher downloads its compressed data from the server and writes it to the local data directory. The Pat cher Feedback object is
notified about the progress of each file and, as in the preparation stage, may abort the patch if necessary. This method returns true if
patching completed successfully, or false if the Pat cher Feedback object aborted the patch. If an error occurs, pat ch raises an exception
in the form of a st d: : st ri ng containing a description of the problem.

® void finish()

The final stage of a patch writes a new checksum file to the local data directory. If an error occurs, f i ni sh raises an exception in the form
of astd:: string containing a description of the problem.

The code below demonstrates a simple patch client:

C++

#i ncl ude <lcePatch2/dientUil.h>

I ce:

: Communi catorPtr conmmuni cator = ...;

| cePat ch2: : Pat cher FeedbackPtr feedback = new MyPat cher Feedbackl ;
| cePat ch2: : PatcherPtr patcher =

try

new | cePat ch2: : Pat cher (comruni cat or, feedback);

{

bool aborted = !patcher->prepare();
i f(!aborted)

aborted = !patcher->patch("");
if(!aborted)

pat cher->finish();
i f (aborted)

cerr << "Patch aborted" << endl;

} catch(const string& reason) {

}

cerr << "Patch error: << reason << endl;

For a more sophisticated example, see deno/ | cePat ch2/ M~Cin your Ice distribution.

Monitoring Patch Progress

The class Pat cher Feedback is an abstract base class that allows you to monitor the progress of a Pat cher object. The class declaration is shown

below:

C++

nanespace | cePatch2 {
cl ass Patcher Feedback : ... {

publ

ic:
virtual bool noFileSummary(const std::string& reason) = 0;
virtual bool checksunStart() = 0;

virtual bool checksunProgress(const std::string& path) = 0;
virtual bool checksunEnd() = O;

virtual bool fileListStart() =
virtual bool fileListProgress(l
virtual bool fileListEnd() = O;

0;
ce::Int percent) = 0;

Copyright © 2017, ZeroC, Inc.



Ice 3.4.2 Documentation

virtual bool patchStart(
const std::string& path, lce::Long size,
Ice::Long updated, lce::Long total) = O;
virtual bool patchProgress(
Ice::Long pos, lce::Long size,
I ce::Long updated, lce::Long total) = O;
virtual bool patchEnd() = O;
b
typedef IcelUtil:: Handl e<Pat cher Feedback> Pat cher FeedbackPtr ;

}

Each of these methods returns a boolean value:

® true allows Pat cher to continue
¢ false directs Pat cher to abort the patch.

The methods are described below.

® bool noFil eSumrary(const std::string& reason)
Invoked when the local checksum file cannot be found. Returning true initiates a thorough patch, while returning false causes Pat cher : :
pr epar e to return false.

® bool checksunStart ()
bool checksunProgress(const std::string& path)
bool checksunEnd()
Invoked by Pat cher : : pr epar e during a thorough patch. The checksunPr ogr ess method is invoked as each file's checksum is being
computed.

® bool fileListStart()
bool fileListProgress(lce::Int percent)
bool fileListEnd()
Invoked by Pat cher : : pr epar e when collecting the list of files to be updated. The per cent argumentto fi | eLi st Progr ess indicates
how much of the collection process has completed so far.

® bool patchStart(const std::string& path, Ice::Long size, Ice::Long updated, lce::Long total)
bool patchProgress(lce::Long pos, lce::Long size, lce::Long updated, Ice::Long total)
bool pat chEnd()
For each file that requires updating, Pat cher : : pat ch invokes pat chSt art to indicate the beginning of the patch, pat chPr ogr ess one
or more times as chunks of the file are downloaded and written, and finally pat chEnd to signal the completion of the file's patch. The pat h
argument supplies the path name of the file, and si ze provides the file's compressed size. The pos argument denotes the number of bytes
written so far, while updat ed and t ot al represent the cumulative number of bytes updated so far and the total number of bytes to be
updated, respectively, of the entire patch operation.

See Also

® |cePatch2 Properties

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice34/IcePatch2+Properties

	IcePatch2 Client Utility Library

