Ice 3.5.1 Documentation

Using a Freeze Map in Java

This section describes the Java code generator and demonstrates how to use a Freeze map in a Java program.

On this page:

slice2freezej Command Line Options
Generating a Simple Map for Java
slice2freezej Ant Task

The Freeze Map Class in Java

Why Comparators are Important

Using Iterators with Freeze Maps in Java
Generating Indices for Freeze Maps in Java
Sample Freeze Map Program in Java

slice2freezej Command Line Options

The Slice-to-Freeze compiler, sl i ce2f r eezej , creates Java classes for Freeze maps. The compiler offers the following command-line options in
addition to the standard options:

--di ct NAME, KEY, VALUE
Generate a Freeze map class named NAVME using KEY as key and VALUE as value. This option may be specified multiple times to generate several

Freeze maps. NAVE may be a scoped Java name, such as Deno. St ruct 10bj ect Map. KEY and VALUE represent Slice types and therefore must
use Slice syntax, such as bool orlce::|dentity. The type identified by KEY must be a legal dictionary key type.

--dict-index MAP[, MEMBER] [, case-sensitive| case-insensitive]
Add an index to the Freeze map named MAP. If MEMBER is specified, the map value type must be a structure or a class, and MEMBER must be the

name of a member of that type. If MEMBER is not specified, the entire value is indexed. When the indexed member (or entire value) is a string, the
index can be case-sensitive (default) or case-insensitive.

--index CLASS, TYPE, MEMBER[, case-sensi tive| case-insensitive]

Generate an index class for a Freeze evictor. CLASS is the name of the index class to be generated. TYPE denotes the type of class to be indexed
(objects of different classes are not included in this index). MEMBER is the name of the data member in TYPE to index. When MEMBER has type st ri ng
, it is possible to specify whether the index is case-sensitive or not. The default is case-sensitive.

--met a META

Define the global metadata directive META. Using this option is equivalent to defining the global metadata META in each named Slice file, as well as in
any file included by a named Slice file.

Generating a Simple Map for Java

As an example, the following command generates a simple map:

$ slice2freezej --dict StringlntMp,string,int

This command directs the compiler to create a map named St r i ngl nt Map, with the Slice key type st ri ng and the Slice value type i nt . The
compiler produces one Java source file: St ri ngl nt Map. j ava.

slice2freezej Ant Task

In addition to the ant task for executing sl i ce2j ava, Ice also includes an ant task for executing sl i ce2f r eezej . The classes for Sl i ce2Fr eezel
Task are stored in the same JAR file (ant -i ce. j ar) as Sl i ce2JavaTask. Both tasks also share the same logic for locating a compiler in your
execution environment and for managing dependencies between Slice files.

The Sl i ce2Fr eezeJTask supports the parameters listed below:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Using+the+Slice+Compilers
https://doc.zeroc.com/display/Ice35/Dictionaries#Dictionaries-types
https://doc.zeroc.com/display/Ice35/Freeze+Evictor+Concepts#FreezeEvictorConcepts-IndexinganEvictorDatabase
https://doc.zeroc.com/display/Ice35/Slice2Java+Ant+Task

Ice 3.5.1 Documentation

Attribute Description Required
dependen @ Specifies an alternate name for the dependency file. If you specify a relative filename, it is relative to ant's current No
cyfile working directory. If not specified, the task uses the name . depend by default. If you do not define this attribute and o

ut put di r is defined, the task creates the . depend file in the designated output directory (see out put di r).

ice Instructs the Slice compiler to permit symbols that have the reserved prefix | ce. This parameter is used in the Ice No
build system and is not normally required by applications.

out put di r = Specifies the directory in which the Slice compiler generates Java source files. If not specified, the task uses ant's No
current working directory.

transl at = Specifies the path name of the Slice compiler. If not specified, the task locates the Slice compiler in its execution No
or environment as described for sl i ce2j ava.

Several Slice compiler options must be defined as nested elements of the task:
® define

Defines a preprocessor macro. The element supports the attributes name and (optionally) val ue, as shown below:

XML

<defi ne name="FQOO'>
<defi ne name="BAR"' val ue="5">

These definitions are equivalent to the command-line options - DFOO and - DBAR=5, respectively.

® dict
Generates a Freeze map. This element is equivalent to the - - di ct command line option and supports three attributes: nane, key, and val
ue.

® dictindex
Generates an index for a Freeze map. This element is equivalent to the - - di ct - i ndex command line option and supports three attributes:
nane, menber , and casesensi tive.

® fileset
Specifies the set of Slice files to be compiled. Refer to the ant documentation of its Fi | eSet type for more information.

® jincl udepath
Specifies the include file search path for Slice files. In ant terminology, i ncl udepat h is a path-like structure. Refer to the ant
documentation of its Pat h type for more information.

® jndex
Generates an index for a Freeze evictor. This element is equivalent to the - - i ndex command line option and supports four attributes: nane,
type, nenber, and casesensi ti ve.

® neta
Defines a global metadata directive in each Slice file as well as in each included Slice file. The element supports the attributes nane and val
ue.

To enable the Sl i ce2Fr eezeJTask in your ant project, define the following t askdef element in your project's build file:

XML

<t askdef name="slice2freezej" classname="Slice2FreezeJTask"/>

This configuration assumes that ant - i ce. j ar is already present in ant's class path. Alternatively, you can specify the JAR explicitly as follows:

XML

<t askdef nanme="slice2freezej" classpath="/opt/lce/lib/ant-ice.jar" classname="Slice2FreezeJTask"/>

Once activated, you can invoke the task to translate your Slice files. The example shown below is a simplified version of the ant project for the | i br a
ry demo:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Slice2Java+Ant+Task

Ice 3.5.1 Documentation

XML

<target nanme="generate" depends="init">
<nkdir dir="generated"/>
<slice2java outputdir="generated">
<fileset dir="." includes="Library.ice"/>
</slice2java>
<slice2freezej ice="on" outputdir="generated" >
<fileset dir="/opt/lcel/slicellce" includes="BuiltinSequences.ice"/>
<fileset dir="." includes="Library.ice"/>
<di ct name="Stringl sbnSegbi ct" key="string" val ue="Ice::StringSeq"/>
</slice2freezej>
</target>

This invocation of the sl i ce2f r eezej task enables the i ce option because the generated Freeze map relies on a type that is defined in an Ice
namespace and therefore loads the Slice file Bui | ti nSequences. i ce directly.

The Freeze Map Class in Java
The class generated by sl i ce2f r eezej implements the Fr eeze. Map interface, as shown below:
Java

package Freeze;

public interface Map<K, V> extends Navi gabl eMap<K, V>

{
voi d fastPut(K key, V value);
void close();
int closeAlllterators();
voi d destroy();
public interface Entrylterator<T> extends java.util.lterator<T>
{
void close();
void destroy(); // an alias for close
}
}

The Map interface implements standard Java interfaces and provides nonstandard methods that improve efficiency and support database-oriented
features. Map defines the following methods:

* fastPut
Inserts a new key-value pair. This method is more efficient than the standard put method because it avoids the overhead of reading and
decoding the previous value associated with the key (if any).

® close
Closes the database associated with this map along with all open iterators. A map must be closed when it is no longer needed, either by
closing the map directly or by closing the Freeze Connect i on object with which this map is associated.

® closeAlllterators
Closes all open iterators and returns the number of iterators that were closed. We discuss iterators in more detail in the next section.

® destroy
Removes the database associated with this map along with any indices.

Map inherits much of its functionality from the Fr eeze. Navi gabl eMap interface, which derives from the standard Java interface j ava. uti | .
Sor t edMap and also supports a subset of the j ava. uti | . Navi gabl eMap interface from Java6:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

Java

package Freeze;

public interface Navigabl eMap<K, V> extends java.util.SortedMVap<K, V>
{

java.util.Mp. Entry<K, V> firstEntry();

java.util.Map. Entry<K, V> lastEntry();

java.util.Mp. Entry<K, V> ceilingEntry(K key);
java.util.Map. Entry<K, V> floorEntry(K key);
java. util.Mp. Entry<K, V> higherEntry(K key);
java.util.Mp. Entry<K, V> |owerEntry(K key);

K ceilingKey(K key);
K fl oorKey(K key);

K hi gher Key(K key);
K | oner Key (K key);

java. util. Set<K> descendi ngKeySet () ;
Navi gabl eMap<K, V> descendi ngMap();

Navi gabl eMap<K, V> headMap(K toKey, bool ean incl usive);

Navi gabl eMap<K, V> tail Map(K fronKey, bool ean inclusive);

Navi gabl eMap<K, V> subMap(K fronKey, bool ean from ncl usive,
K t oKey, bool ean tol ncl usive);

java.util.Mp. Entry<kK, V> pollFirstEntry();
java.util.Mp. Entry<K, V> pollLastEntry();

bool ean fast Renove(K key);

@ The generated class does not implement j ava. uti | . Navi gabl eMap because Freeze maps must remain compatible with Java5.

The Navi gabl eMap interface provides a number of useful methods:

® firstEntry
lastEntry
Returns the first and last key-value pair, respectively.

® ceilingEntry
Returns the key-value pair associated with the least key greater than or equal to the given key, or null if there is no such key.

® floorEntry
Returns the key-value pair associated with the greatest key less than or equal to the given key, or null if there is no such key.

® higherEntry
Returns the key-value pair associated with the least key greater than the given key, or null if there is no such key.

® |owerEntry
Returns the key-value pair associated with the greatest key less than the given key, or null if there is no such key.

® ceilingKey
f 1 oor Key
hi gher Key
| oner Key

These methods have the same semantics as those described above, except they return only the key portion of the matching key-value pair
or null if there is no such key.

® descendi ngKeySet
Returns a set representing a reverse-order view of the keys in this map.

® descendi ngMap
Returns a reverse-order view of the entries in this map.

Copyright © 2017, ZeroC, Inc.

©

Ice 3.5.1 Documentation

headMap
Returns a view of the portion of this map whose keys are less than (or equal to, if inclusive is true) the given key.

tail Map
Returns a view of the portion of this map whose keys are greater than (or equal to, if inclusive is true) the given key.

subMap
Returns a view of the portion of this map whose keys are within the given range.

pol | FirstEntry
pol | Last Entry
Removes and returns the first and last key-value pair, respectively.

f ast Renove

Removes an existing key-value pair. As for f ast Put , this method is a more efficient alternative to the standard r enove method that returns
true if a key-value pair was removed, or false if no match was found.

You must supply a comparator object when constructing the map in order to use many of these methods.

Note that Navi gabl eMap also inherits overloaded methods named headMap, t ai | Map, and subMap from the Sor t edMVap interface. These
methods have the same semantics as the ones defined in Navi gabl eMap but they omit the boolean arguments (refer to the JDK documentation for
complete details). Although these methods are declared as returning a Sor t edMap, the actual type of the returned object is a Navi gabl eMap that
you can downcast if necessary.

There are some limitations in the sub maps returned by the headMap, t ai | Map and subMap methods:

® A new entry in the Freeze map cannot be added via a sub map, therefore calling put raises Unsuppor t edOper ati onExcepti on.
® An existing entry in the Freeze map cannot be removed via a sub map or iterator for a secondary key.

Now let us examine the contents of the source file created by the example in the previous section:

Java

public class StringlntMap extends ...
/1 inplements Freeze.Map<String, |nteger>

{

public StringlntMap(

Freeze. Connecti on connecti on,

String dbNane,

bool ean creat eDb,

java. util.Conparator<String> conparator);

public StringlntMap(

Freeze. Connecti on connecti on,
String dbNane,
bool ean createDb);

public StringlntMap(

Freeze. Connecti on connecti on,
String dbNane);

St ri ngl nt Map derives from an internal Freeze base class that implements the interface Fr eeze. Map<Stri ng, | nteger>. The generated class
defines several overloaded constructors whose arguments are described below:

® connection

The Freeze connection object.

dbNane
The name of the database in which to store this map's persistent state. Note that a database can only contain the persistent state of one
map type. Any attempt to instantiate maps of different types on the same database results in undefined behavior.

createDb
A flag indicating whether the map should create the database if it does not already exist. If this argument is not specified, the default value is
true.

conpar at or
An object used to compare the map's keys. If this argument is not specified, the default behavior compares the encoded form of the keys.

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Freeze+Map+Concepts#FreezeMapConcepts-FreezeConnections

Ice 3.5.1 Documentation

Why Comparators are Important

The constructor of a Freeze map optionally accepts a comparator object for the primary key and, if any indices are generated, a second object that
supplies comparators for each of the index keys. If you do not supply a comparator, Freeze simply compares the encoded form of the keys. This
default behavior is acceptable when comparing keys for equality, but using the encoded form cannot work reliably when comparing keys for ordering
purposes.

For example, many of the methods in Navi gabl eMap perform greater-than or less-than comparisons on keys, including cei | i ngEnt ry, headMap,
and t ai | MapFor MEMBER. All of these methods raise Unsuppor t edOper at i onExcept i on if you failed to supply a corresponding comparator
when constructing the map. (The same applies to Navi gabl eMap objects created for secondary keys.) In fact, the only Navi gabl eMap methods
that do not require a comparator are fi rstEntry, |l ast Entry, pol | First Entry, pol | Last Entry, and f ast Renove.

As you can see, the functionality of a Freeze map is quite limited if no comparators are configured, therefore we recommend using comparators at all
times.

Using Iterators with Freeze Maps in Java

You can iterate over a Freeze map just as you can with any container that implements the j ava. uti | . Map interface. For example, the code below
displays the key and value of each element:

Java

StringlntMap m = new StringlntMap(...);

java.util.lterator<java.util.Mp.Entry<String, Integer>>i = mentrySet().iterator();
while (i.hasNext()) {

java.util.Map. Entry<String, Integer> e = i.next();

Systemout.println("Key: " + e.getKey());

Systemout.println("Value: " + e.getValue());
}

Generally speaking, a program should close an iterator when it is no longer necessary. (An iterator that is garbage collected without being closed
emits a warning message.) However, an explicit close was not necessary in the preceding example because Freeze automatically closes a read-only
iterator when it reaches the last element (a read-only iterator is one that is opened outside of any transaction). If instead our program had stopped
using the iterator prior to reaching the last element, an explicit close would have been necessary:

Java

StringlntMap m = new StringlntMp(...);

java.util.lterator<java.util.Mp.Entry<String, Integer>>i = mentrySet().iterator();
while (i.hasNext()) {

java.util.Map. Entry<String, Integer> e = i.next();

Systemout.println("Key: " + e.getKey());

Systemout. println("Value: " + e.getValue());

if (e.getValue().intValue() == 5)

br eak;

}

((Freeze. Map. Entrylterator)i).close();

Closing the iterator requires downcasting it to a Freeze-specific interface named Fr eeze. Map. Ent ryl t er at or . The definition of this interface was
shown in the previous section.

Freeze maps also support the enhanced f or loop functionality in Java5. Here is a simpler way to write our original program:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Freeze+Map+Concepts#FreezeMapConcepts-IteratingaFreezeMap

Ice 3.5.1 Documentation

Java

StringlntMap m = new StringlntMap(...);

for (java.util.Map.Entry<String, Integer> e : mentrySet()) {
Systemout.println("Key: " + e.getKey());
Systemout.println("Value: " + e.getValue());

As in the first example, Freeze automatically closes the iterator when no more elements are available. Although the enhanced f or loop is
convenient, it is not appropriate for all situations because the loop hides its iterator and therefore prevents the program from accessing the iterator in
order to close it. In this case, you can use the traditional whi | e loop instead of the f or loop, or you can invoke cl oseAl | | t er at or s on the map
as shown below:

Java

StringlntMap m = new StringlntMap(...);
for (java.util.Map.Entry<String, Integer>e : mentrySet()) {
Systemout.println("Key: " + e.getKey());

Systemout.println("Value: " + e.getValue());
if (e.getValue().intValue() == 5)
br eak;

}
int num= mcloseAllterators();
assert(num<= 1); // The iterator may al ready be cl osed.

The cl oseAl | | t er at or s method returns an integer representing the number of iterators that were actually closed. This value can be useful for
diagnostic purposes, such as to assert that a program is correctly closing its iterators.

Generating Indices for Freeze Maps in Java

Using the - - di ct - i ndex option to define an index for a secondary key causes sl i ce2f r eezej to generate the following additional code in a
Freeze map:

® A static nested class named | ndexConpar at or s, which allows you to supply a custom comparator object for each index in the map.

® An overloading of the map constructor that accepts an instance of | ndexConpar at or s.

® An overloading of the r ecr eat e method that accepts an instance of | ndexConpar at or s.

® Searching, counting, and range-searching methods for finding key-value pairs using the secondary key.

We discuss each of these additions in more detail below. In this discussion, MEMBER refers to the optional argument of the - - di ct - i ndex option,
and MEMBER_TYPE refers to the type of that member. As explained earlier, if MEMBER is not specified, sl i ce2f r eezej creates an index for the
value type of the map. The sample code presented in this section assumes we have generated a Freeze map using the following command:

Java

$ slice2freezej --dict StringlntMp,string,int --dict-index StringlntMp

By default, index keys are sorted using their binary Ice-encoded representation. This is an efficient sorting scheme but does not necessarily provide a
meaningful traversal order for applications. You can choose a different order by providing an instance of the | ndexConpar at or s class to the map
constructor. This class has a public data member holding a comparator (an instance of j ava. uti | . Conpar at or <MEMBER_TYPE>) for each index
in the map. The class also provides an empty constructor as well as a convenience constructor that allows you to instantiate and initialize the object
all at once. The name of each data member is MEVMBERConpar at or . If MEMBER is not specified, the | ndexConpar at or s class has a single data
member named val ueConpar at or .

G) Much of the functionality offered by a map index requires that you provide a custom comparator.

Here is the definition of | ndexConpar at or s for St ri ngl nt Map:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

Java

public class StringlntMap ... {
public static class IndexConparators {
public I ndexConparators() {}

public | ndexConparators(java. util.Conparator<Integer> val ueConparator);

public java.util.Conparator<Integer> val ueConpar at or;

To instantiate a Freeze map using your custom comparators, you must use the overloaded constructor that accepts the | ndexConpar at or s object.
For our St ri ngl nt Map, this constructor has the following definition:

Java

public class StringlntMap ... {
public StringlntMap(
Freeze. Connecti on connecti on,
String dbNane,
bool ean creat eDb,
java. util. Conparator<String> conparator,
| ndexConpar at ors i ndexConpar at ors) ;

Now we can instantiate our St ri ngl nt Map as follows:

Java

java. util. Conparator<String> nmyMi nKeyConparator = ...;

Stringl nt Map. | ndexConpar at ors i ndexConparators = new Stringl nt Map. | ndexConparators();
i ndexConpar at or s. val ueConparator = ...;

StringlntMap m = new Stringl nt Map(connection, "stringlntMp", true,
my Mai nKeyConpar at or, i ndexConpar ators);

If you later need to change the index configuration of a Freeze map, you can use one of the r ecr eat e methods to update the database. Here are
the definitions from St ri ngl nt Map:

Copyright © 2017, ZeroC, Inc.

Java

Ice 3.5.1 Documentation

public class StringlntMap ... {
public static void recreate(

Freeze. Connecti on connecti on,
String dbNane,
java. util. Conparator<String> conparator);

public static void recreate(

Freeze. Connecti on connecti on,

String dbNane,

java. util. Conparator<String> conparator,
I ndexConpar at ors i ndexConpar at ors) ;

The first overloading is generated for every map, whereas the second overloading is only generated when the map has at least one index. As its
name implies, the r ecr eat e method creates a new copy of the database. More specifically, the method removes any existing indices, copies every
key-value pair to a temporary database, and finally replaces the old database with the new one. As a side-effect, this process also populates any
remaining indices. The first overloading of r ecr eat e is useful when you have regenerated the map to remove the last index and wish to clean up the
map's database state.

sl i ce2freezej also generates a number of index-specific methods. The names of these methods incorporate the member name (MEMBER), or use
val ue if MEMBER is not specified. In each method name, the value of MEMBER is used unchanged if it appears at the beginning of the method's name.
Otherwise, if MEMBER is used elsewhere in the method name, its first letter is capitalized. The index methods are described below:

public Freeze. Map. Entrylterator<Map. Entry<K, V>>
f i ndBy MEMBER(MEMBER_TYPE i ndex)

public Freeze. Map. Entrylterator<wmap. Entry<kK, V>>

fi ndBy MEMBER(MEMBER_TYPE i ndex, bool ean onl yDups)

Returns an iterator over elements of the Freeze map starting with an element with whose index value matches the given index value. If there
is no such element, the returned iterator is empty (hasNext always returns false). When the second parameter is true (or is not provided),
the returned iterator provides only "duplicate” elements, that is, elements with the very same index value. Otherwise, the iterator sets a
starting position in the map, and then provides elements until the end of the map, sorted according to the index comparator. Any attempt to
modify the map via this iterator results in an Unsuppor t edOper at i onExcept i on.

public int MEMBERCount (MEMBER_TYPE i ndex)
Returns the number of elements in the Freeze map whose index value matches the given index value.

publ i c Navi gabl eMap<MEMBER TYPE, Set <Map. Entry<K, V>>>
headMapFor MEMBER(MEMBER _TYPE t o, bool ean i ncl usive)

publ i c Navi gabl eMap<MEMBER_TYPE, Set <Map. Entry<kK, V>>>

headMvapFor MEMBER(MEMBER_TYPE t 0)

Returns a view of the portion of the Freeze map whose keys are less than (or equal to, if i ncl usi ve is true) the given key. If i ncl usi ve is
not specified, the method behaves as if i ncl usi ve is false.

publ i c Navi gabl eMap<MEMBER_TYPE, Set <Map. Entry<K, V>>>
t ai | MapFor MEMBER(MEMBER _TYPE from bool ean incl usive)

public NavigableMap<MEMBER_TYPE, Set<Map.Entry<K, V>>>}}

t ai | MapFor MEVBER(MEMBER_TYPE from

Returns a view of the portion of the Freeze map whose keys are greater than (or equal to, if i ncl usi ve is true) the given key. If i ncl usi ve
is not specified, the method behaves as if i ncl usi ve is true.

publ i c Navi gabl eMap<MEMBER TYPE, Set <Map. Entry<K, V>>>
subMapFor MEMBER(MEMBER_TYPE from bool ean fromnl ncl usi ve,
MEMBER_TYPE to, bool ean tol ncl usive)

publi c Navi gabl eMap<MEMBER TYPE, Set <Map. Entry<K, V>>>

subMapFor MEMBER(MEMBER_TYPE from MEMBER_TYPE t0)

Returns a view of the portion of the Freeze map whose keys are within the given range. If f r oml ncl usi ve and t ol ncl usi ve are not
specified, the method behaves as if f r ol ncl usi ve is true and t ol ncl usi ve is false.

publ i c Navi gabl eMap<MEMBER TYPE, Set <Map. Entry<K, V>>>

mapFor MEVBER()
Returns a view of the entire Freeze map ordered by the index key.

Copyright © 2017, ZeroC, Inc.

10

Ice 3.5.1 Documentation

For the methods returning a Navi gabl eMap, the key type is the secondary key type and the value is the set of matching key-value pairs from the
Freeze map. (For the sake of readability, we have omitted the j ava. uti | prefix from Set and Map. Ent ry.) In other words, the returned map is a
mapping of the secondary key to all of the entries whose value contains the same key. Any attempt to add, remove, or modify an element via a sub
map view or an iterator of a sub map view results in an Unsuppor t edOper at i onExcepti on.

Note that iterators returned by the f i ndBy MEMBER methods, as well as those created for sub map views, may need to be closed explicitly, just like
iterators obtained for the main Freeze map.

Here are the definitions of the index methods for St ri ngl nt Map:

Java

public Freeze. Map. Entrylterator<Map. Entry<String, |nteger>>
findByVal ue(l nt eger index);

public Freeze. Map. Entrylterator<Map. Entry<String, |nteger>>
findByVal ue(l nteger index, bool ean onl yDups);

public int val ueCount(Ilnteger index);

publ i c Navi gabl eMap<I nt eger, Set<Map. Entry<String, |nteger>>>
headMapFor Val ue(I nteger to, bool ean incl usive);

publ i c Navi gabl eMap<I nt eger, Set<Map.Entry<String, |nteger>>>
headMapFor Val ue(| nteger to);

publ i c Navi gabl eMap<I nt eger, Set<Map.Entry<String, |nteger>>>
tai | MapFor Val ue(I nteger from bool ean inclusive);

publ i c Navi gabl eMap<I nt eger, Set<Map.Entry<String, |nteger>>>
tai | MapFor Val ue(l nteger fron);

publ i c Navi gabl eMap<I nt eger, Set<Map.Entry<String, |nteger>>>
subMapFor Val ue(I nteger from bool ean from ncl usive,

I nteger to, bool ean tol nclusive);
publ i c Navi gabl eMap<I nt eger, Set<Map.Entry<String, |nteger>>>
subMapFor Val ue(l nteger from Integer to);

publ i c Navi gabl eMap<I nt eger, Set<Map.Entry<String, |nteger>>>
nmapFor Val ue() ;

Sample Freeze Map Program in Java

The program below demonstrates how to use a St ri ngl nt Map to store <stri ng, i nt > pairs in a database. You will notice that there are no explicit
read or wri t e operations called by the program; instead, simply using the map has the side effect of accessing the database.

Copyright © 2017, ZeroC, Inc.

11

Ice 3.5.1 Documentation

Java

public class dient
{
public static void
mai n(String[] args)
{
/1 Initialize the Conmmunicator.
11
I ce. Conmuni cat or conmuni cator = Ice.Uil.initialize(args);

/] Create a Freeze database connection.
11

Freeze. Connecti on connection = Freeze. Util.createConnection(conmunicator,

/1 Instantiate the map.
/1
StringlntMap map = new Stringl nt Map(connection, "sinple", true);

/1 Cear the map.
/1
map. cl ear();

int i;

/1 Popul ate the map.

I

for (i =0; i < 26; i++) {
final char[] ch ={ (char)('a" + i) };
map. put (new String(ch), i);

}

/1 Iterate over the map and change the val ues.

11

for (java.util.Map.Entry<String, Integer> e : map.entrySet()) {
Integer in = e.getValue();
e.setVal ue(in.intValue() + 1);

}

/1 Find and erase the |ast el enent.
/1

bool ean b;

b = map. contai nsKey("z");
assert (b);

b = map. f ast Renove("z");
assert (b);

/1 Cl ean up.

/1

map. cl ose();

connection. cl ose();
comuni cat or. destroy();

System exit(0);

Prior to instantiating a Freeze map, the application must connect to a Berkeley DB database environment:

Java

Freeze. Connecti on connection = Freeze. Uil .createConnection(conmunicator, "db");

"db");

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

The second argument is the name of a Berkeley DB database environment; by default, this is also the file system directory in which Berkeley DB
creates all database and administrative files.

Next, the code instantiates the St ri ngl nt Map on the connection. The constructor's second argument supplies the name of the database file, and
the third argument indicates that the database should be created if it does not exist:

Java

StringlntMap map = new Stringlnt Map(connection, "sinple", true);

After instantiating the map, we clear it to make sure it is empty in case the program is run more than once:

Java

map. cl ear();

We populate the map, using a single-character string as the key. As with j ava. uti | . Map, the key and value types must be Java objects but the
compiler takes care of autoboxing the integer argument:

Java
for (i =0; i < 26; i++) {

final char[] ch ={ (char)('a + i) };
map. put (new String(ch), i);

Iterating over the map is no different from iterating over any other map that implements the j ava. uti | . Map interface:

Java

for (java.util.Map.Entry<String, Integer> e : map.entrySet()) {
Integer in = e.getValue();
e.setValue(in.intValue() + 1);

Next, the program verifies that an element exists with key z, and then removes it using f ast Renove:

Java

b = map. contai nsKey("z");
assert (b);
b = map. f ast Renove("z");
assert (b);

Finally, the program closes the map and its connection.

Java

map. cl ose();
connection. cl ose();

See Also
® Using the Slice Compilers

® slice2java Command-Line Options
® Freeze Map Concepts

12 Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Using+the+Slice+Compilers
https://doc.zeroc.com/display/Ice35/slice2java+Command-Line+Options
https://doc.zeroc.com/display/Ice35/Freeze+Map+Concepts

13

Ice 3.5.1 Documentation

Copyright © 2017, ZeroC, Inc.

	Using a Freeze Map in Java

