
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

IceStorm Quality of Service
An IceStorm subscriber specifies Quality of Service (QoS) parameters at the time of subscription. The supported QoS parameters are described in
the sections below

On this page:

Reliability QoS for IceStorm
Retry Count QoS for IceStorm
IceStorm QoS Example

Reliability QoS for IceStorm
The QoS parameter affects message delivery. The only legal values at this point are and the empty string. If not specified, reliability ordered
the default value is the empty string (meaning not ordered).

The reliability QoS requires a twoway subscriber proxy. If you specify this reliability QoS, IceStorm will forward events in the order they are ordered
received but doesn't forward them immediately. Instead, IceStorm waits for the reply from the forwarding of an event before forwarding the next
event. This guarantees that the subscriber will process the events in the same order as they were received even if its doesn't threading model
serialize incoming requests.

Retry Count QoS for IceStorm
IceStorm automatically removes a subscriber if or is raised while attempting to deliver ObjectNotExistException NotRegisteredException
an event. IceStorm considers these exceptions as indicators of a hard failure, after which it is unnecessary to continue event delivery.

For other kinds of failures, IceStorm uses the QoS parameter to determine when to remove a subscriber. A value of means retryCount -1
IceStorm retries forever and never automatically removes a subscriber unless a hard failure occurs. A value of zero means IceStorm never retries
and immediately removes the subscriber. For positive values, IceStorm decrements the subscriber's retry count for each failure and removes the
subscriber once it reaches zero. Linked topics always have a configured retry count of . The default value of the parameter is zero.-1 retryCount

A retry count of adds some resiliency to your IceStorm application by ignoring intermittent network failures such as -1 ConnectionRefusedExcept
. However, there is also some risk inherent in using a retry count of because an improperly configured subscriber may never be removed. For ion -1

example, consider what happens when a subscriber registers using a transient endpoint: if that subscriber happens to terminate and resubscribe with
a different endpoint, IceStorm will continue trying to deliver events to the subscriber at its old endpoint. IceStorm can only remove the subscriber if it
receives a hard error, and that is only possible when the subscriber is reachable.

To use a retry count of successfully, the subscriber should either register with a fixed endpoint, or use to take advantage of indirect -1 IceGrid
proxies and automatic activation. Furthermore, if the subscriber is expected to function correctly after a restart of its process, the subscriber must use
the same . The application can rely on the operation to raise when the subscriber is identity subscribeAndGetPublisher AlreadySubscribed
already subscribed.

IceStorm QoS Example
The Slice type is defined as a whose key and value types are both , therefore the QoS parameter name and IceStorm::QoS dictionary string
value are both represented as strings. The code we presented in our earlier used an empty dictionary for the QoS argument, subscriber example
meaning default values are used. The C++ and Java examples shown below illustrate how to set the parameter to .reliability ordered

Here is the C++ example:

C++

IceStorm::QoS qos;
qos["reliability"] = "ordered";
topic->subscribeAndGetPublisher(qos, proxy->ice_twoway());

Here is the Java example:

http://doc.zeroc.com/display/Ice350/IceStorm+Delivery+Modes
https://doc.zeroc.com/display/Ice35/IceGrid
https://doc.zeroc.com/display/Ice35/Object+Identity
https://doc.zeroc.com/display/Ice35/Implementing+an+IceStorm+Subscriber

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Java

java.util.Map qos = new java.util.HashMap();
qos.put("reliability", "ordered");
topic.subscribeAndGetPublisher(qos, proxy.ice_twoway());

See Also

IceGrid
Implementing an IceStorm Subscriber
IceStorm Delivery Modes
Object Identity

https://doc.zeroc.com/display/Ice35/IceGrid
https://doc.zeroc.com/display/Ice35/Implementing+an+IceStorm+Subscriber
https://doc.zeroc.com/display/Ice35/IceStorm+Delivery+Modes
https://doc.zeroc.com/display/Ice35/Object+Identity

	IceStorm Quality of Service

