
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Writing an Ice Application with PHP
This page shows how to create an Ice client application with PHP.

On this page:

Compiling a Slice Definition for PHP
Writing a Client in PHP
Running the Client in PHP

Compiling a Slice Definition for PHP
The first step in creating our PHP application is to compile our to generate PHP code. You can compile the definition as follows:Slice definition

$ slice2php Printer.ice

The compiler produces a single source file, , from this definition. The exact contents of the source file do not concern us slice2php Printer.php
for now — it contains the generated code that corresponds to the interface we defined in .Printer Printer.ice

Writing a Client in PHP
The client code, in , is shown below in full:Client.php

Whenever we show Unix commands, we assume a Bourne or Bash shell. The commands for Windows are essentially identical and
therefore not shown.

https://doc.zeroc.com/display/Ice34/Writing+a+Slice+Definition

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

1.

2.

3.

4.
5.

PHP

<?php
require 'Ice.php';
require 'Printer.php';

$ic = null;
try
{
 $ic = Ice_initialize();
 $base = $ic->stringToProxy("SimplePrinter:default -p 10000");
 $printer = Demo_PrinterPrxHelper::checkedCast($base);
 if(!$printer)
 throw new RuntimeException("Invalid proxy");

 $printer->printString("Hello World!");
}
catch(Exception $ex)
{
 echo $ex;
}

if($ic)
{
 // Clean up
 try
 {
 $ic->destroy();
 }
 catch(Exception $ex)
 {
 echo $ex;
 }
}
?>

The program begins with statements to load the Ice run-time definitions () and the code we generated from our Slice definition in require Ice.php
the previous section ().Printer.php

The body of the main program contains a block in which we place all the client code, followed by a block. The block catches all try catch catch
exceptions that may be thrown by the code; the intent is that, if the code encounters an unexpected run-time exception anywhere, the stack is
unwound all the way back to the main program, which prints the exception and then returns failure to the operating system.

The body of our block goes through the following steps:try

We initialize the Ice run time by calling . The call to returns an reference, which is the Ice_initialize initialize Ice_Communicator
main object in the Ice run time.
The next step is to obtain a proxy for the remote printer. We create a proxy by calling on the communicator, with the string stringToProxy

. Note that the string contains the object identity and the port number that were used by the "SimplePrinter:default -p 10000"
server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for now; we will see more
architecturally sound ways of doing this when we discuss .)IceGrid
The proxy returned by is of type , which is at the root of the inheritance tree for interfaces and classes. stringToProxy Ice_ObjectPrx
But to actually talk to our printer, we need a proxy for a interface, not an interface. To do this, we need to do a Demo::Printer Object
down-cast by calling . A checked cast sends a message to the server, effectively asking "is Demo_PrinterPrxHelper::checkedCast
this a proxy for a interface?" If so, the call returns a proxy narrowed to the interface; otherwise, if the proxy Demo::Printer Printer
denotes an interface of some other type, the call returns .null
We test that the down-cast succeeded and, if not, throw an exception that terminates the client.
We now have a live proxy in our address space and can call the method, passing it the time-honored printString "Hello World!"
string. The server prints that string on its terminal.

Before the code exits, it destroys the communicator (if one was created successfully). Doing this is essential in order to correctly finalize the Ice run
time. If a script neglects to destroy the communicator, Ice destroys it automatically.

Running the Client in PHP

https://doc.zeroc.com/display/Ice34/IceGrid

Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

The server must be started before the client. Since Ice for PHP does not support server-side behavior, we need to use a server from another
language mapping. In this case, we will use the :C++ server

$ server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window using PHP's
command-line interpreter:

$ php -f Client.php
$

The client runs and exits without producing any output; however, in the server window, we see the that is produced by the printer. "Hello World!"
To get rid of the server, we interrupt it on the command line.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

exception ::Ice::ConnectionRefusedException
{
 error = 111
}

Note that, to successfully run the client, the PHP interpreter must be able to locate the Ice extension for PHP. See the Ice for PHP installation
instructions for more information.

See Also

Client-Side Slice-to-PHP Mapping
IceGrid

https://doc.zeroc.com/pages/viewpage.action?pageId=5048188
https://doc.zeroc.com/display/Ice34/Client-Side+Slice-to-PHP+Mapping
https://doc.zeroc.com/display/Ice34/IceGrid

	Writing an Ice Application with PHP

