Ice 3.5.1 Documentation

Using Descriptor Variables and Parameters

Variable descriptors allow you to define commonly-used information once and refer to them symbolically throughout your application descriptors.

On this page:

® Descriptor Substitution Syntax
© Limitations
© Escaping a Variable
® Special Descriptor Variables
® Descriptor Variable Scoping Rules
© Resolving a Reference
© Template Parameters
© Modifying a Variable

Descriptor Substitution Syntax

Substitution for a variable or parameter VP is attempted whenever the symbol ${ VP} is encountered, subject to the limitations and rules described
below. Substitution is case-sensitive, and a fatal error occurs if VP is not defined.

Limitations
Substitution is only performed in string values, and excludes the following cases:

® |dentifier of a template descriptor definition

<server-tenplate id="${invalid}" ...>

® Name of a variable definition

<variabl e name="${invalid}" ...>

® Name of a template parameter definition

<paraneter name="${invalid}" ...>

* Name of a template parameter assignment

<server-instance tenplate="T" ${invalid}="val" ...>

®* Name of a node definition

<node name="${invalid}" ...>

* Name of an application definition

<application name="${invalid}" ...>

Substitution is not supported for values of other types. The example below demonstrates an invalid use of substitution:

<variabl e name="regi ster" value="true"/>
<node nanme="Node">
<server id="Serverl" ...>
<adapt er nane="Adapter1" register-process=${register} .../>

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/Variable+Descriptor+Element

Ice 3.5.1 Documentation

In this case, a variable cannot supply the value of r egi st er - pr ocess because that attribute expects a boolean value, not a string.

Most values are strings, however, so this limitation is rarely a problem.

Escaping a Variable

You can prevent substitution by escaping a variable reference with an additional leading $ character. For example, in order to assign the literal string
${ abc} to a variable, you must escape it as shown below:

<vari abl e name="x" val ue="$${abc}"/>

The extra $ symbol is only meaningful when immediately preceding a variable reference, therefore text such as US$$55 is not modified. Each
occurrence of the characters $$ preceding a variable reference is replaced with a single $ character, and that character does not initiate a variable
reference. Consider these examples:

<vari abl e name="a" val ue="hi"/>
<vari abl e name="b" val ue="$${a}"/>
<vari abl e name="c" val ue="$%$${a}"/>
<vari abl e name="d" val ue="$%$$${a}"/ >

After substitution, b has the value ${ a}, ¢ has the value $hi , and d has the value $${ a} .

Special Descriptor Variables

IceGrid defines a set of read-only variables to hold information that may be of use to descriptors. The names of these variables are reserved and
cannot be used as variable or parameter names. The table describes the purpose of each variable and defines the context in which it is valid.

Reserved Description
Name

appl i cati on The name of the enclosing application.

applicatio @ The pathname of the enclosing application's distribution directory, and an alias for ${ node. dat adi r}/di stri b
n.distrib / ${application}.

node The name of the enclosing node.

node. os The name of the enclosing node's operating system. On Unix, this is value is provided by unane. On Windows, the value is W ndo
ws.

node. The host name of the enclosing node.

host nanme

node. The operating system release of the enclosing node. On Unix, this value is provided by unanme. On Windows, the value is obtained

rel ease from the OSVERSI ONI NFOdata structure.

node. The operating system version of the enclosing node. On Unix, this value is provided by unane. On Windows, the value represents

version the current service pack level.

node. The machine hardware name of the enclosing node. On Unix, this value is provided by unane. On Windows, the value can be

machi ne x86, x64, or IA64, depending on the machine architecture.

node. The absolute pathname of the enclosing node's data directory.

dat adi r

server The ID of the enclosing server.

server. The pathname of the enclosing server's distribution directory, and an alias for ${ node. dat adi r}/ servers/ ${ server}

distrib /distrib.

service The name of the enclosing service.

session.id | The client session identifier. For sessions created with a user name and password, the value is the user ID; for sessions created

from a secure connection, the value is the distinguished name associated with the connection.

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/Application+Distribution
https://doc.zeroc.com/display/Ice35/Application+Distribution

Ice 3.5.1 Documentation

The availability of a variable is easily determined in some cases, but may not be readily apparent in others. For example, the following example
represents a valid use of the ${ node} variable:

XML

<i cegrid>
<applicati on nane="App">
<server-tenplate id="T" ...>
<par aneter name="id"/>
<server id="${id}" ...>
<property name="NodeNane" val ue="${node}"/>
</ server>
</ server-tenpl at e>
<node nanme="TheNode">
<server-instance tenplate="T" id="TheServer"/>
</ node>
</ application>
</icegrid>

Although the server template descriptor is defined as a child of an application descriptor, its variables are not evaluated until it is instantiated. Since a
template instance is always enclosed within a node, it is able to use the ${ node} variable.

Descriptor Variable Scoping Rules

Descriptors may only define variables at the application and node levels. Each node introduces a new scope, such that defining a variable at the
node level overrides (but does not modify) the value of an application variable with the same name. Similarly, a template parameter overrides the
value of a variable with the same name in an enclosing scope. A descriptor may refer to a variable defined in any enclosing scope, but its value is
determined by the nearest scope. The following figure illustrates these concepts:

Copyright © 2017, ZeroC, Inc.



Ice 3.5.1 Documentation

application

<wariable name="x

o R

nodes, nodeld

2 =" <variable name="y"

walum="gns

G{x} == 2 Flxp == 1

server template

cxesvar—Lemplate, >

<parameter name "x">

S{x} == 3

Variable scoping semantics.

In this diagram, the variable x is defined at the application level with the value 1. In nodeA, x is overridden with the value 2, whereas x remains
unchanged in nodeB. Within the context of nodeA, x continues to have the value 2 in a server instance definition. However, when x is used as the
name of a template parameter, the node's definition of x is overridden and x has the value 3 in the template's scope.

Resolving a Reference
To resolve a variable reference ${ var }, IceGrid searches for a definition of var using the following order of precedence:
1. Pre-defined variables
2. Template parameters, if applicable
3. Node variables, if applicable
4. Application variables
After the initial substitution, any remaining references are resolved recursively using the following order of precedence:
1. Pre-defined variables

2. Node variables, if applicable
3. Application variables

Template Parameters

Template parameters are not visible in nested template instances. This situation can only occur when an IceBox server template instantiates a
service template, as shown in the following example:

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/IceGrid+Templates

Ice 3.5.1 Documentation

XML

<i cegrid>
<application nanme="1ceBoxApp" >
<service-tenpl ate id="Servi ceTenpl ate">
<par anet er name="nane"/>
<service name="${nane}" entry="DenoService:create">

<property name="${nane}.ldentity" value="${id}-${name}"/> <I-- WRONG -->
</ service>
</ service-tenpl ate>
<server-tenpl ate id="Server Tenpl ate">
<par aneter name="id"/>

<icebox id="${id}" endpoints="default" ...>
<service-instance tenpl ate="Servi ceTenpl ate" nanme="Servicel"/>
</icebox>

</ server-tenpl at e>
<node nanme="Nodel">
<server-instance tenpl ate="Server Tenpl ate" id="1ceBoxServer"/>
</ node>
</ application>
</icegrid>

The service template incorrectly refers to i d, which is a parameter of the server template.

Template parameters can be referenced only in the body of a template; they cannot be used to define other parameters. For example, the following is
illegal:

XML

<server-tenpl ate id="Server Tenpl ate">
<par anet er name="par1"/>
<par anet er nanme="par2" defaul t="${parl}"/>

</ server-tenpl at e>

Modifying a Variable

A variable definition can be overridden in an inner scope, but the inner definition does not modify the outer variable. If a variable is defined multiple
times in the same scope (which is only relevant in XML definitions), the most recent definition is used for all references to that variable. Consider the
following example:

XML

<applicati on nanme="MApp">
<vari abl e name="x" val ue="1"/>
<variabl e name="y" val ue="${x}"/>
<vari abl e name="x" val ue="2"/>

</ application>

When descriptors such as these are created, IceGrid validates their variable references but does not perform substitution until the descriptor is acted
upon (such as when a node is generating a configuration file for a server). As a result, the value of y in the above example is 2 because that is the
most recent definition of x.

See Also

Variable Descriptor Element
IceGrid Templates
Application Distribution

L]
L]
L]
® Variables in IceGrid Descriptors

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/Variable+Descriptor+Element
https://doc.zeroc.com/display/Ice35/IceGrid+Templates
https://doc.zeroc.com/display/Ice35/Application+Distribution
https://doc.zeroc.com/display/Ice35/Variables+in+IceGrid+Descriptors

Ice 3.5.1 Documentation

Copyright © 2017, ZeroC, Inc.



	Using Descriptor Variables and Parameters

